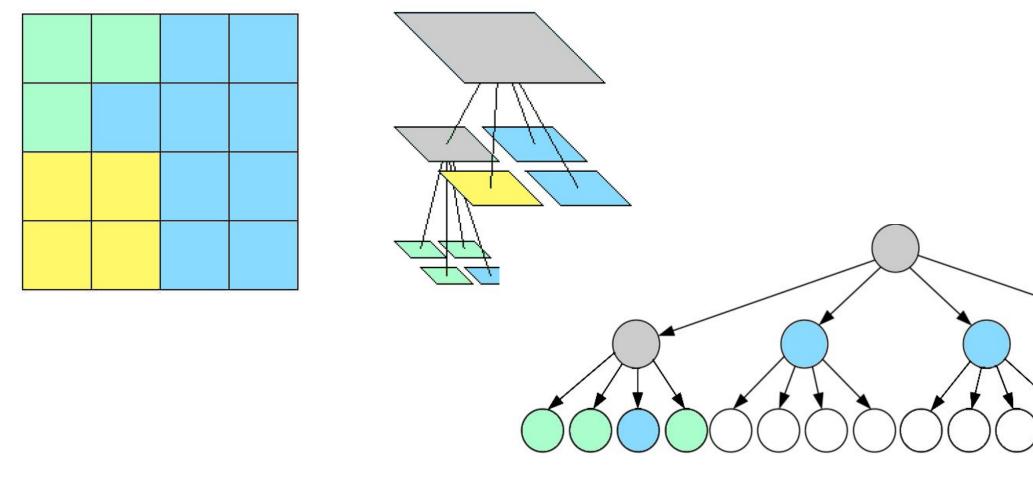
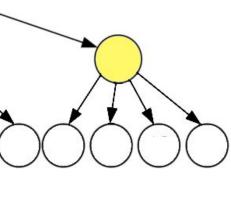
Quadtree Generating Networks: **Efficient Heirarchical Scene Parsing with Sparse Convolutions** Kashyap Chitta¹, Jose M. Alvarez², Matrial Hebert³ ¹ MPI-IS and University of Tübingen | ² NVIDIA | ³ Carnegie Mellon University Quadtree Generating Networks Results **Results on Cityscapes** Architecture • QGN-All: high-memory propagation scheme Encoder-decoder with skip connections and no dilated convolutions with all pixels propagated • QGN-PC: low-memory with only composite class propagated Good trade-off between accuracy and memory Model DRN-C-42¹ DRN-D-105¹ DeepLabv3² QGN-All (Ours) QGN-PC (Ours) • Decoder activations stored as hash tables **Results on ADE20k** (x, y, feature) • Prediction layers at each block that control • QGN can be combined with recent backbone architectures as a drop-in replacement for propagation dilated convolutions **Propagation Scheme** Model • If prediction = composite class, activation PSPNet³ propagated to next layer, else set to zero PSPNet + QGN Can adjust propagation to trade-off Conclusions performance and memory consumption Segmentation predictions can be made Datasets • Results competitive to state-of-the-art with • In Cityscapes, SUN-RGBD and ADE20k, more 2x-4x less memory consumption than 50% of the pixels belong to 32*32 blocks Flexible approach that can be **adapted at** inference without retraining References [1] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated Residual Networks. In CVPR, 2017.

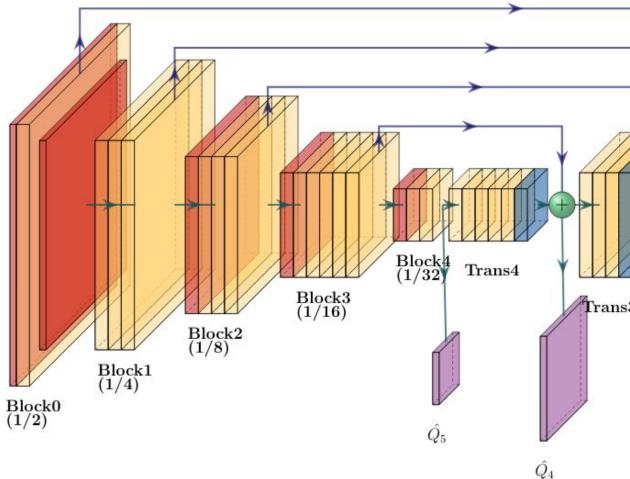
Semantic Segmentation

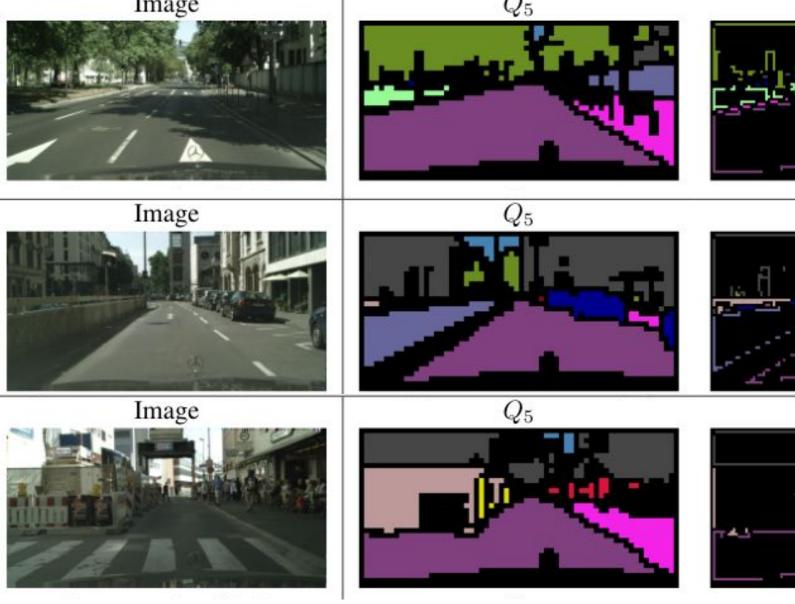
Problem

- Segmentation is a memory-intensive task due to high resolution, dilation-based operations that maintain high resolution activations, and quadratic scaling
- Leads to (1) poor training due to low batch sizes, (2) latency at inference


 Goal: improve performance-memory trade-offs with sparse output representations


Quadtrees


- Hierarchical representation of 2D grids
- Advantage: Memory scales sub-quadratically, based on the number of pixels at class boundaries


Segmentation Maps as Quadtrees

- Starting from full-resolution, recursively group 4 neighboring pixels (children) to a single node (parent)
- **Composite class** assigned if children belong to different classes (grey in illustration)

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking Atrous Convolution for Semantic Image Segmentation. ArXiv, 2017. [3] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid Scene Parsing Network. In CVPR, 2017.

Carnegie Mellon University

emory (GB)	Compute (TFLOPS)	mloU
3.77	1.07	70.9
15.15	1.91	75.6
14.27	1.97	79.3
5.85	0.48	78.2
3.66	0.25	73.0

emory (GB)	Accuracy	mloU
~2.5	81.39	43.29
~1.2	81.67	43.91

hierarchically using quadtree representations