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Abstract

We tackle the CARLA Leaderboard 2.0, a novel benchmark for autonomous vehicles
that involves solving 38 complex traffic scenarios in simulation, such as navigating in
intersections, avoiding road obstacles, and high-speed highway driving. Using end-
to-end imitation learning, we train a model that directly maps sensor inputs to driving
signals by imitating a privileged expert system. Building on an existing architecture,
we refine key aspects of the machine learning pipeline, involving data collection,
model training and evaluation, to adapt to the new benchmark. We highlight the
impact of expert driving style and frame importance, two understudied aspects of
imitation learning, on downstream model performance. We also uncover a design
flaw in the leaderboard’s evaluation metrics, which unintentionally encourages
premature termination of evaluation routes, and propose a solution for future
challenges. By applying our insights, we develop the top-performing open-source
model for CARLA Leaderboard 2.0, ranking second overall in the 2024 CARLA
Autonomous Driving Challenge.
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1 Introduction

According to the World Health Organization, road accidents result in approximately
1.19 million deaths worldwide each year and are the leading cause of death for
children and young adults aged 5–29 [Org23]. Autonomous vehicles have the
potential to significantly reduce traffic-related fatalities by eliminating human error,
a major contributor to these incidents. Additionally, self-driving cars could improve
traffic efficiency by minimizing congestion and idle time, lowering the environmental
impact of transportation. They also promise increased accessibility for elderly and
disabled individuals as well as an improvement in overall quality of life by allowing
commuters to use travel time for work or leisure.

Despite these promising benefits, widespread deployment of autonomous vehicles
depends on their ability to operate safely and reliably across diverse weather
conditions and traffic scenarios. Addressing this challenge, the CARLA Leaderboard
2.0 provides a novel simulation-based evaluation framework, designed to test
autonomous systems with a variety of complex tasks. These tasks include swerving
into opposite traffic to avoid obstacles, safely navigating at highways speeds, merging
into slow and fast traffic, negotiating at intersections, and reacting to dynamic actors
like pedestrians and cyclists.

This thesis consitutes a first attempt to tackle the CARLA Leaderboard 2.0 evaluation
benchmark using end-to-end imitation learning (IL), a learning paradigm that has
seen success in many fields, such as robotics and video games. In this approach, a
machine learning model learns to imitate behavioral demonstrations provided by
humans or an expert system. What makes our task particularly challenging is that
the agent often needs to make split-second decisions in the new scenarios provided
by Leaderboard 2.0. This means that the crucial frames necessary to solve the new
scenarios form only a tiny fraction of the overall dataset. Thus, even when using an
expert system to collect a large training dataset in an automated manner, we still
encounter a low-data regime in many crucial situations.

The main contributions of our work are the following:

• We rethink all stages of the machine learning pipeline – data collection, training,
and evaluation – on the new CARLA Leaderboard 2.0 benchmark, distilling
the minimal adaptations required at each stage to optimize the performance of
an existing state-of-the-art architecture, TransFuser++ [JCG23].

• We highlight the impact of two understudied aspects, expert driving style
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Chapter 1. Introduction

and frame importance, on the performance of imitation learning models in
autonomous driving.

• We develop a competitive open-source model that ranks first in the MAP track
and second in the SENSORS track of the 2024 CARLA Autonomous Driving
Challenge. We also include ablation studies and qualitative analyses of failure
modes to offer a solid foundation for future research on CARLA Leaderboard
2.0.

• We theoretically demonstrate how the performance metrics used in the official
leaderboard inadvertently encourage participants to terminate evaluation
routes prematurely to achieve competitive driving scores, and propose changes
to the metrics that can solve this problem for future challenges.

The content of this thesis is structured as follows. In Chapter 2, we provide an
overview over related research on imitation learning with a focus on autonomous
driving. In Chapter 3, we explain the main components of our project from a
technical perspective, including the CARLA Leaderboard 2.0 and our end-to-end
imitation learning approach. In Chapter 4, we provide details about the evaluation
benchmarks and datasets we create as part of this project. In Chapter 5, we present
our experimental results, including the official leaderboard results and a range of
internal ablations. Finally, in Chapter 6, we discuss the implications of our findings,
providing insights into the design of performance metrics and our model’s failure
modes.
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2 Related Work

This chapter presents an overview of relevant research, starting with an introduction
to end-to-end self-driving and its advantages over traditional modular architectures.
We discuss imitation learning as a scalable and effective method for training agents
to navigate complex environments by imitating an expert. Finally, we situate IL
within the context of autonomous driving, covering datasets, trends in output
representations for driving and the common issue of covariate shift.

2.1 End-to-End Self-Driving

Most self-driving solutions in use today consist of modular pipelines. As detailed
by [BGC+19], these pipelines typically include a range of subsystems that work
together to drive the vehicle. Early modules are responsible for perceiving the
environment using sensors like cameras or LiDAR, producing explicit intermediate
representations that may include road layouts, information about nearby dynamic
actors, the state of traffic lights, and more. Additional modules forecast the future
states of the ego vehicle and other dynamic actors such as pedestrians and vehicles.
Based on the outputs of these modules, planning modules determine the future path
of the ego vehicle, for example in the form of steering commands or waypoints (lateral
control). The pipeline also predicts braking and acceleration signals (longitudinal
control), which consider the behavior of other agents and the overall traffic situation.
Commonly, such modular pipelines use sophisticated rule-based algorithms to
translate environmental perception into driving signals [AK21, XMC+21].

While these systems offer strong explainability through examination of the in-
termediate output representations, they come with several drawbacks. A major
challenge is handling uncertainty - uncertainty information from upstream modules
is either discarded or needs to be explicitly managed by downstream modules,
complicating their design [MGK+17]. Additionally, error propagation is a significant
issue [YLCT20] - mispredictions in early modules can lead to catastrophic erros
in downstream modules, as was the case in one of the first known fatal accidents
involving an autonomous vehicle in 2016, where the Tesla autopilot failed to detect
a white truck against the background of a brightly lit sky [TPJR18]. Finally, for
rule-based modules, it is difficult to account for all possible edge cases in real-world
driving situations. Without careful design, these problems can negatively affect the
overall reliability and performance of the autonomous vehicle.
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Chapter 2. Related Work

In recent years, an alternative paradigm has gained increasing attention in the self-
driving community. End-to-end self-driving [CWC+24, TMS+22] involves training
neural networks that take sensor information as inputs and directly produce driving
outputs without relying on explicit intermediate representations. This approach
can simplify the architecture of self-driving models and reduce the number of
failure points within the system. In addition, it allows learning from larger datasets
[CBL+20, GKM+20], as data mapping sensory inputs to driving output can be
produced simply by driving (either by a human or by an expert system in a
simulator), whereas previously, it may have been necessary to collect expensive
human annotations for the intermediate representations. However, training an
end-to-end model that robustly generalizes to a wide variety of complex driving
scenarios in different environments and weather conditions remains a significant
challenge and active area of research [CWC+24]. Due to the absence of hard-coded
safety measures in end-to-end systems, it is especially crucial to enable such models
to safely manage rare “long-tail” situations, which may not be part of the training
data. With our end-to-end approach to solving the CARLA Leaderboard 2.0, we
aim to contribute to the development of end-to-end autonomous vehicles that are
reliable and safe for widespread use.

2.2 Imitation Learning

Imitation learning (IL) is a learning paradigm where an agent (usually a deep neural
network) learns to operate in an environment by mimicking the behavior of an
expert. This expert, which may be either a human or an automated system (expert)
using privileged information not accessible to the IL agent, provides demonstrations
of the desired actions. The IL agent then learns to map its sensory inputs to the
expert’s actions as accurately as possible. This approach sets it apart from the field of
reinforcement learning (RL), where agents learn through trial and error and optimize
a numerical reward function that defines the goal of the task, without relying on
explicit demonstrations. In many complex tasks, including autonomous driving,
where creating an appropriate reward function is difficult and errors during learning
could be costly or dangerous, imitation learning presents itself as an appealing
alternative to reward-based RL [MYDM22].

The most straightforward form of imitation learning is behavior cloning (BC) [BS95],
where the agent is trained in a supervised fashion on a large, fixed dataset of expert
demonstrations. In this approach, the inputs are sensory data and the outputs are
the actions taken by the expert. This is the strategy that we use in this work, and
its main strength lies in its simplicity: BC works completely offline, i.e., it does not
require rolling out the learned policy or interacting with the environment (simulator)
during training.

Still, the behavior cloning setting differs from classical supervised learning in several
ways. In classical supervised learning, it is assumed that samples are independent
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2.3. Imitation Learning in Autonomous Driving

and identically distributed (i.i.d.) during both training and testing. In contrast, BC
involves training samples that are highly correlated, as they are sequential frames
from the expert’s trajectory. Additionally, during inference, prediction errors affect
the agent’s future states, potentially pushing it out of the training distribution and
leading to increasingly inaccurate predictions. This problem, known as covariate shift,
can thus result in accumulating errors and is a frequent cause of failure for imitation
learning models [CUS+21, KWB+21].

Several other IL methods have been developed, including inverse reinforcement
learning (IRL) [AD21], which aims to infer the underlying reward function that
the expert is implicitly optimizing and then uses this inferred reward function to
guide learning in a reinforcement learning framework. The learned reward function
can help the model generalize across a wider range of states learned, mitigating
covariate shift. Generative adversarial imitation learning (GAIL) [HE16], on the other
hand, combines adversarial training with imitation learning, using a discriminator to
differentiate between expert and agent-generated behavior. By continually improving
the agent’s policy through adversarial training, GAIL promises improved resilience
to variations in state distributions compared to classical behavioral cloning. Despite
the potential advantages offered by IRL and GAIL, their training processes are
considerably more complex and can be difficult to stabilize, particularly with large
models like ours. Therefore, we opt for behavior cloning, which allows us to leverage
the benefits of a simpler, highly parallelizable training approach at a large model
and dataset scale.

2.3 Imitation Learning in Autonomous Driving

In recent years, the combination of end-to-end models with imitation learning has
become a dominant paradigm in autonomous driving research. This popularity
mainly stems from the scalability and effectiveness of such models, particularly in
leveraging large-scale driving datasets that have recently become available.

Datasets used for IL in autonomous driving are typically generated either by collect-
ing data from real-world vehicles equipped with various sensors or within simulators.
Some of the most widely used real-world datasets include the Waymo Open Dataset
[SKD+20], the Audi Autonomous Driving Dataset [GKM+20], nuScenes [CBL+20],
nuPlan [CKT+22], and Argoverse 2 [WQA+21]. Simulated datasets, such as those
created using CARLA [DRC+17], offer an alternative approach. This approach in-
evitably comes with the drawback of introducing domain shift compared to the
real world, as simulators cannot fully capture the complexity of real-world driv-
ing. Additionally, researchers often generate their own datasets, which can hinder
comparability across studies. Even when using the same evaluation benchmarks,
differences in results may stem from variations in datasets rather than methods,
creating a potential confounding factor. Despite these drawbacks, simulated datasets
are significantly easier and more cost-effective to generate compared to real-world
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Chapter 2. Related Work

datasets, enabling the creation of larger-scale datasets. Additionally, simulators pro-
vide researchers with full control over key parameters such as sensor configurations,
expert driving behavior, routes, traffic scenario distributions, weather conditions,
and other variables of interest – factors that cannot be manipulated when working
with fixed real-world datasets.

IL methods have also achieved notable success in CARLA, with many top-ranking
submissions to the CARLA Leaderboard 1.0 (see Section 3.1.1) utilizing end-to-end
models trained with this approach [CPJ+22, JCG23, SWC+22, CK22]. A key trend
that has emerged in recent years is the change in output representations for IL
models. Initially, most researches used direct control outputs in the form of steering
and acceleration values. This may, however, produce inconsistent control values in
sucessive frames and requires models to specialize to the precise vehicle dynamics,
reducing generalizability [CWC+24]. Consequently, the community transitioned to
predicting waypoints – future positions of the vehicle at fixed time intervals (e.g.,
every 0.5 seconds). This representation combines lateral (path) and longitudinal
(acceleration) control in a single target but requires additional mechanisms, such
as PID controllers, to convert the predictions into actionable control signals for the
vehicle.

Recently, [JCG23] introduced a disentangled representation, which separates lateral
and longitudinal control into two labels: Lateral control is represented by check-
points, which are future vehicle positions spaced equally by distance (e.g., 1 meter
apart), while longitudinal control is expressed through one-hot encoded vectors
representing target speed classes. This representation has the benefits of providing
path supervision even when the vehicle is stationary (where waypoints would
collapse into a single point), and improving interpretability by making it easier to
diagnose whether a model failure is due to path or speed prediction errors. This
representation is adopted in this work.

To address covariate shift in the domain of autonomous driving, there have been
attempts to augment behavior cloning with on-policy data in the training loop.
In particular, DAgger [RGB11] is a method that involves querying the expert for
corrections from failure states encountered during the model’s policy rollout, and
then continuing to train the model on this additional data. This method has been
successfully applied to improve model robustness in states that are usually not
reached by the expert policy [ZC17, PBOB+20]. However, to maintain simplicity in
the training process, this work focuses on BC alone, addressing covariate shift by
applying data augmentation techniques to the sensory inputs, which also help the
model learn corrective behaviors, as will be discussed in subsequent chapters.
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3 Background & Methods

This chapter outlines the methods used in our approach and provides the necessary
background. We start by introducing the CARLA simulator for autonomous driving
research and the CARLA Leaderboard 2.0, covering the different types of scenarios
that agents must navigate and the metrics used to evaluate their performance.
Additionally, the chapter explains how the privileged expert driver we use to collect
our datasets operates. It also details the architecture and training routine employed
for our IL agent, highlighting the adjustments made to meet the challenges of
Leaderboard 2.0.

3.1 CARLA Leaderboard 2.0

This section introduces the CARLA simulator for autonomous driving research and
describes the CARLA Leaderboard 2.0 challenge in which we partake.

3.1.1 CARLA Simulator

CARLA [DRC+17] is an open-source simulator for autonomous driving research,
developed with the support of the Computer Vision Centre in Barcelona, Spain,
and the Embodied AI Foundation in California. Built on the Unreal Engine [Gam],
CARLA offers detailed graphics and a range of free digital assets, including urban
layouts, buildings, and various vehicle models, allowing developers to build varied
and realistic custom environments. It features numerous weather settings, combining
elements such as rain, cloudy weather, clear skies, sunset, and night. The simulator
also supports flexible sensor configurations and provides complete control over
static and dynamic actors, tools for map generation, and more.

Furthermore, CARLA includes a Python API, which enables researchers to test both
privileged agents (expert drivers) and sensor-based agents. It also provides automatic
tools for benchmarking performance, such as collision detection, measurements of
traveled distance, and detection of traffic rule violations. Additionally, CARLA can
render supplementary data modalities, such as semantic segmentation or depth
maps, which are important for developing machine learning-based autonomous
driving systems.
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Chapter 3. Background & Methods

Leaderboard

The CARLA Autonomous Driving Leaderboard [Lea] is an open competition for
participants from both academia and industry, with the objective of evaluating
the driving performance of autonomous agents in realistic traffic conditions. The
leaderboard features two tracks: SENSORS and MAP. In the SENSORS track, agents
are allowed to use up to 8 RGB cameras, 2 LIDAR sensors, 4 RADARs, 1 GNSS
sensor, 1 Inertial Measurement Unit (IMU), and a speedometer. The MAP track
includes all the sensors from the SENSORS track, and an additional high-definition
(HD) map in OpenDRIVE format. This map provides the road network, including
lanes and turns, to the agent as a network of dense waypoints. Thus, even though
our model is developed for the SENSORS track without usage of the HD map, it can
also be submitted to the MAP track. In addition to the sensor data, the agent receives
route information through target points (spaced up to 200 meters apart) indicating
which turns to take and roads to follow.

In the previous version of the leaderboard (CARLA Leaderboard 1.0), participants
were tasked with driving secret test routes of 1-2 kilometers, facing six traffic scenar-
ios. The competition has received significant interest from the autonomous driving
community, with 36 public entries on the SENSORS track of the leaderboard to date,
and several technical advancements pushing leaderboard scores. Notable innova-
tions include advanced sensor fusion techniques (TransFuser [CPJ+22], InterFuser
[SWC+22]), a strong expert driver trained via reinforcement learning (TCP [WJC+22])
and a novel training method that involves predicting trajectories of other (non-ego)
vehicles (LAV [CK22]). As a consequence, scores have dramatically improved since
the opening of the leaderboard in 2020, rising from under 10DS to nearly 80DS
in 2023 (with the maximum being 100DS). As scores approach saturation in this
benchmark, the CARLA team has introduced CARLA Leaderboard 2.0, which poses
a new and much more difficult challenge.

The CARLA release for Leaderboard 2.0 introduces three new large maps with a
size of 10 square kilometers each. Two of these maps, Town12 and Town13, serve
as a training and validation pair and are publicly available, while the third map,
Town14, is a secret test town. These maps encompass a variety of environments,
such as urban city centers, suburban areas, and rural country roads. On these new
maps, the driving task is particularly challenging due to the diverse environments
that require agents to adapt to different traffic patterns, the need to navigate safely
on highways with speed limits of up to 120 km/h, and the need to handle 38 new,
complex scenarios described in Section 3.1.2. Unlike Leaderboard 1.0, the test routes
in Leaderboard 2.0 are significantly longer, averaging about 10 kilometers, requiring
agents to solve many more scenarios in sequence. As a consequence, leaderboard
scores have dropped back into the single digits, and it remains to be seen whether
this benchmark will see the same rapid improvement as Leaderboard 1.0 did in the
coming years.
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3.1. CARLA Leaderboard 2.0

3.1.2 Scenario Types

In CARLA Leaderboard 2.0, agents need to solve 38 challenging scenarios, which
are classified into 6 categories by the organizers [Lea]:

• Control loss (1 scenario): The ego vehicle must recover from a loss of control
caused by bad road conditions.

• Traffic negotiation (10 scenarios): These scenarios take place on intersections
and involve negotiating with other dynamic actors, for example by performing
unprotected turns through oncoming traffic, negotiating unsignalized inter-
sections, yielding to bicycles, or avoiding collisions with emergency vehicles
running red lights. Some of these scenario types come with different variants
(right turn or left turn, signalized or unsignalized junction), for a total number
of 10 scenarios.

• Highway (8 scenarios): Scenarios related to driving on highways. Examples
include merging into moving traffic from an on-ramp, avoiding collisions with
vehicles cutting into the ego’s lane from an adjacent lane of static traffic, and
crossing a lane of moving traffic to exit the highway.

• Obstacle avoidance (10 scenarios): The ego vehicle must navigate around
various obstacles, including stationary or slow-moving hazards, vehicles
opening doors, or oncoming vehicles invading its lane. These scenarios pose
unique challenges since they require leaving the ego’s original lane, which
requires precise timing and accurate judgement of distance to other vehicles
and their velocities in order to find adequate gaps in adjacent lanes.

• Braking and lane changing (8 scenarios): Includes scenarios that require the
ego vehicle to perform sudden braking maneuvers, for example due to sudden
deceleration of the leading vehicle or a pedestrian emerging from behind a
parked vehicle. Also includes scenarios where an obstacle (e.g., a pedetrian)
appears while the ego is performing another maneuver such as a turn.

• Parking Exit (1 scenario): The ego vehicle must safely enter the flow of traffic
from a parking bay.

The assignment of specific scenario names to these groups is shown in Figure 6.3.

3.1.3 Evaluation Metrics

In CARLA Leaderboard 2.0, the three primary metrics used to evaluate agents’
performance are driving score (DS), route completion (RC) and infraction score (IS).

• Driving score (DS) is the most important metric, since it is used to determine
the ranking of different entries to the leaderboard. It ranges from 0 to 100 and
is defined the product of the other two main metrics: DS = RC× IS.
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Chapter 3. Background & Methods

• Route completion (RC) measures the portion of the route completed by the
agent on a scale of 0 to 100. The score only includes the distance covered while
the vehicle remains on the road; any distance traveled off the road is excluded
from the calculation.

• The infraction score (IS) ranges from 0 to 1 and measures any violations of
traffic rules in a multiplicative manner:

IS = 0.5#Ped
∗0.6#Veh

∗0.65#Stat
∗0.7#Red

∗0.7#Yie
∗0.7#Sce

∗0.8#Sto

The individual infraction types, ordered from most to least severe, are:

– Ped: Collision with a pedestrian, penalty factor 0.5.

– Veh: Collision with a vehicle, penalty factor 0.6.

– Stat: Collision with static layout (e.g., guardrails), penalty factor 0.65.

– Red: Running a red light, penalty factor 0.7.

– Yie: Failure to yield to an emergency vehicle, penalty factor 0.7

– Sce: Scenarios that can block the ego vehicle indefinitely have a timeout
of four minutes, after which the ego vehicle will be released to continue
the route. However, in this case a penalty factor of 0.7 will be applied.

– MinSp: The ego vehicle is expected to keep a minimum speed calculated
from the speed of surrounding traffic. A failure to maintain this speed will
lead to a penalty factor between 1 and 0.7. To simplify the presentation,
this infraction type is not included in the formula above. Furthermore,
we exclude this infraction type from IS calculation in evaluations on
the Town13 Short benchmark, since incurring this infraction is often
unavoidable on short routes.

– Sto: Running a stop sign, penalty 0.8.

– Blo: If an agent doesn’t take any actions for 180 simulation seconds, for
instance because it is blocked by another vehicle, the simulation will end.
This will not produce a penalty in the infraction score (but will of course
prevent the ego from completing the route).

It is important to note that infraction score (IS) is calculated simply using
the absolute number of occurences (which we denote with #) of the respective
infraction as exponents in the formula above, whereas when we report statistics
on infraction types in our result tables, we report the average number of
occurences per kilometer driven. This normalization facilitates comparisons of
infraction probabilities across benchmarks with different route lengths.
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3.2. PDM-lite Expert Driver

Figure 3.1: PDM-Lite [Bei24]. This open-source, rule-based planner is capable of
solving all 38 scenarios in the CARLA Leaderboard 2.0.

3.2 PDM-lite Expert Driver

To collect a dataset for training our imitation learning agent, we employ a modified
version of PDM-lite [Bei24] as a privileged expert driver, the components of which are
illustrated in Figure 3.1. PDM-lite is the first published rule-based system capable of
solving all 38 scenarios of CARLA Leaderboard 2.0, achieving higher driving scores
than previous expert systems and near-perfect route completion on short routes.
Its open-source nature enables us to adjust expert behavior based on observations
about downstream model behavior. We summarize the operating principle of this
expert below, and refer the reader to the technical report for a more comprehensive
description.

• Creating a dense path: As a first step, the expert plans a dense sequence of
spatially equidistant points (spaced 10cm apart) with the A* algorithm, based
on the sparse target points (spaced up to 200m apart) provided by the simulator.
For the obstacle avoidance scenarios that require deviating from this path, a
short section of the route where the scenario occurs is laterally shifted to an
adjacent lane.

At each timestep the expert then performs the following steps to generate control
outputs using its privileged knowledge about the state of the world and other
dynamic actors:

• Proposing a target speed: The expert identifies potential “leading actors”
(which may also be static objects) such as vehicles, pedestrians, red lights or
stop signs in the ego vehicle’s future path. For each identified actor, a target
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speed proposal is calculated using the Intelligent Driver Model (IDM) [THH00],
a mathematical model that determines an appropriate speed for the ego vehicle
based on the leading actor’s speed, distance, and other parameters. The
minimum of these proposals is selected as the final target speed proposal. In
free traffic conditions, where no leading actor is present, the expert defaults to
using 72% of the speed limit as the target speed proposal, which is empirically
sufficient to avoid incurring MinSpeed infractions.

• Collision checks with dynamic actors: Since IDM only ensures a safe distance
to the leading vehicle, but does not account for potential collisions with other
actors that may enter the ego’s path, the expert performs additional collision
checks. The movements of other vehicles are forecasted using an action repeat
assumption (i.e., they are expected to repeat their current steering, throttle and
brake values in future time steps) combined with the kinematic bicycle model
[PAdNdLF17], while pedestrians are assumed to continue at a constant speed.
If a potential collision with any vehicle is predicted, the expert sets the target
speed to 0 to avoid an accident.

• Conversion to control commands: After determining the target speed, the
expert chooses control commands for lateral and longitudinal control using
the target speed and the planned path. For longitudinal control, a simple linear
model estimates the required throttle and brake values that adjust the vehicle’s
speed towards the target speed. For lateral control, a PID controller is used to
minimize the difference between the vehicle’s heading angle and the angle to a
checkpoint located between 2.4 meters and 10.5 meters ahead on the vehicle’s
planned path, depending on the current speed.

3.2.1 Expert Style Adjustments

Despite the strong performance of PDM-lite in CARLA Leaderboard 2.0 scenarios
demonstrated in [Bei24], it was necessary to make adjustments to train an imitation
learning model with this expert:

Collision Check Bug

The original PDM-lite implementation contained a bug in its bounding box inter-
section tests for detecting collisions with dynamic actors. The expert’s target speed
would only be set to zero every second frame when a collision was predicted. In
the first frame where a collision was detected, the target speed would correctly
be reduced to zero. However, in the following frame, the ego vehicle’s forecasted
position would assume a target speed of zero, causing no collision to be detected.
The target speed would then revert to its original value, resulting in alternating
speed settings between zero and the original target speed.
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3.2. PDM-lite Expert Driver

While braking every second frame was sufficient to bring the ego vehicle to a halt,
these fluctuating values were used as labels for target speed prediction in the IL loss.
This led the model to average these frame-level variations, producing a moderate
target speed rather than executing hard braking. Fixing this issue to consistently
produce zero speed labels when braking due to a predicted collision was critical
for downstream model performance, even though it did not affect the expert’s own
scores.

Expert style

After resolving the collision check bug, video analysis of models trained on the expert
data revealed that the trained models still failed to learn strong braking reflexes
when approaching objects and road targets such as pedestrians, red lights, or stop
signs. The root cause of this issue was the expert’s driving style, which involved early
braking and a slow approach towards obstacles, rather than maintaining a moderate
speed and braking only when necessary shortly before the obstacle. While this
behavior did not result in infractions during expert evaluations, it led to numerous
crashes and infractions in the downstream IL models.

To address this, adjustments were made to the Intelligent Driver Model (IDM)
parameters governing the expert’s braking behavior. The goal was to make the
expert brake more abruptly and closer to objects that trigger the braking response.
The specific IDM parameter changes are listed in the table below:

Parameter Previous Value Updated Value
Safe time headway T
Pedestrians, traffic lights, stop signs 0.5s 0.1s
Road obstacles 0.25s 0.1s
Leading vehicles, bicycles 0.25s 0.25s
Safe distance s0
Pedestrians, bicycles, leading vehicles 4m 4m
Road obstacles 0.1m 2m
Stop signs 2m 2m
Traffic lights 5m 6m
Comfortable deceleration b
if ego speed > 6.02m/s 20m/s2 3.72m/s2

if ego speed < 6.02m/s 20m/s2 8.7m/s2

Maximum acceleration a 11m/s2 24m/s2

Runge-Kutta integration t_bound 1.0s 0.05s

Table 3.1: IDM parameter changes to adjust expert braking behavior.

These adjustments resulted in more reactive and decisive braking behavior, improv-
ing the downstream IL model’s performance, as discussed in Section 5.2.
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Figure 3.2: TF++ [JCG23]. This end-to-end imitation learning approach is the best
publicly available baseline for CARLA.

3.3 TransFuser++ Architecture

The architecture we use for our IL agent is based on TransFuser++ [JCG23], one of
the leading open-source architectures with proven success in previous self-driving
challenges in CARLA. In general, our goal in this project was to make only minimal
adjustments to this architecture and its training routine, allowing us to assess
what can be achieved with an existing state-of-the-art model and to identify any
architectural changes necessitated by the new evaluation setting and scenarios. Here,
we first describe the original TF++ implementation, and then our adjustments for
the new leaderboard in the following subsections.

TF++ is a single frame model, i.e., it only takes sensor information from the current
timestep as input, without any information about the past. As shown in Figure 3.2,
the model inputs are a single RGB front camera image, a rasterized 360° birds-eye-
view image from a LiDAR scanner mounted above the vehicle center, the current
speed and a target point provided by the route (“goal location” in the figure). The
outputs are a class label for one of the target speed classes (cf. Section 3.3.1 for
handling of continuous target speeds) and lateral control predictions in the form
of “checkpoints”, i.e., points along the future path of the vehicle spaced 1 meter
apart, with the first checkpoint located at a distance of about 2.5 meters in front of
the vehicle center.

TF++ processes RGB and birds-eye-view LiDAR data in two separate branches,
which consist of convolutional neural networks that are connected with transformer
modules at multiple resolutions. The output of the BEV branch is an 8×8 feature
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grid, which is flattened and used as input tokens to a transformer decoder, along
with the current velocity of the ego vehicle. There are 11 learned queries, which the
decoder uses aggregate relevant information for target speed prediction (1 token)
and checkpoint prediction (10 tokens). The target speed token is passed to a 2-layer
MLP to produce the final target speed prediction. The checkpoint transformer tokens
are passed one-by-one to a GRU decoder, which is initialized with the next 2D target
point provided in the route, producing ten checkpoint predictions. Finally, the target
speed and checkpoint predictions are used to produce steering, brake and throttle
commands using a PID controller for lateral control and a simple linear model for
longitudinal control, similar to the expert (cf. Section 3.2).

Auxiliary training tasks

In addition to the outputs relevant for driving, there are four additional prediction
heads (depth, semantic segmentation, BEV bounding boxes, BEV semantic segmen-
tation). Prediction of these additional data modalities serves to guide and regularize
the model’s perception training. From the 8×8 feature grid, a convolutional decoder
predicts a birds-eye-view image, which covers a cone in front of the ego vehicle that
corresponds to the area visible in the front camera, with classes such as road, lane
marking, pedestrian, vehicle, red light, stop sign, and more. A CenterNet decoder
[DBX+19] predicts up to 10 bounding boxes of nearby vehicles and pedestrians
(including the boxes’ position, extent and rotation). From the output of the image
branch, convolutional decoders predict a depth view and a semantic segmentation
mask for the front camera image. Note that the output of the convolutional image
encoder is used exclusively for these auxiliary tasks; thus, any information from the
camera image relevant to driving has to be fused with the BEV branch through the
transformer modules.

Perception backbone architecture

For the perception branches (RGB and LiDAR), we use the ResNet-34 architec-
ture [HZRS16] in our standard (“Base”) model configuration. This widely used
architecture consists of a 34-layer convolutional neural network and uses residual
connections to improve gradient flow between layers, which allows training of
deeper networks by mitigating the vanishing gradient problem. Additionally, we
experiment with the larger RegNetY_032 architecture [RKG+20], which uses linearly
parameterized block widths and squeeze-and-excitation blocks to adaptively re-
weight feature response across channels and focus on more informative features. This
is the architecture we use for our leaderboard models. A performance comparison of
both architectures can be found in Section 5.6. Depending on whether ResNet-34 or
RegNetY_032 is used as perception architecture, our models have a total of around
64 million and 121 million parameters, respectively.
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3.3.1 Adjustments for Leaderboard 2.0

Here, we describe the minimal architectural changes necessitated by the new
evaluation setting and scenarios.

• Extra speed classes. While TF++ originally used only three target speed classes
at 2m/s, 5m/s, and 8m/s (28.8km/h), in Leaderboard 2.0, the agent is required
to drive at much higher speeds in interurban and highway scenarios (failure
to maintain a certain minimum speed would incur an infraction). Therefore,
we use 8 target speed classes at [0.0, 4.0, 8.0, 10, 13.89, 16, 17.78, 20] m/s (up to
72km/h). These classes were selected by analyzing the distribution of target
speeds chosen by the expert in our dataset.

• Two-hot labels. PDM-Lite operates with a continuous range of target speed
values, enabling it to follow leading vehicles at any speed. To solve target
speed regression with TransFuser’s classification module, we employ two-hot
labels [FOV+24]. This method converts a continuous value into a two-hot
representation by interpolating between one-hot labels of the two nearest
classes. This means that at most two (adjacent) entries of the two-hot vector
will be non-zero. For instance, with our 8 speed classes ([0.0, 4.0, 8.0, 10, 13.89, 16,
17.78, 20] m/s), a target speed of 3.0m/s is represented as [0.25,0.75,0,0,0,0,0,0].

• Increased RGB height. We increase the resolution of the input RGB image
from 1024×256 to 1024×384, adding 128 pixels to the top of the image. This
adjustment is necessary because, in some intersections in the new Leaderboard
2.0 towns, traffic lights are positioned much closer to the stop line, making
them invisible at the original image height. This comes at the cost of increased
GPU memory consumption due to the increased number of activations in the
convolutional RGB perception branch.

• Dynamic lookahead controller For stable lateral control at the high speeds
required by Leaderboard 2.0, it is advantageous to adjust the distance of
the point selected to follow along the ego vehicle’s predicted path based on
the current speed. TF++ predicts a set of 10 checkpoints, each spaced 1m
apart, with the first checkpoint located 2.5 meters from the vehicle center.
The distance of the checkpoint to which the lateral controller minimizes the
angle is determined by the formula d = (0.097v+0.692), where v is the ego’s
speed in km/h. We round down to the nearest available predicted checkpoint.
This scaling ensures that at low speeds, the controller selects a closer point,
facilitating tight turns, while at high speeds, it selects a distant point, resulting
in more stable steering.
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3.4 Training

In this section, we provide details about our distributed training routine, including
the losses we use for the different prediction task, the optimization algorithm and its
parameters.

Data parallelism

To efficiently train our self-driving model with a large dataset, we employ distributed
training on four Nvidia A100 GPUs, using a Slurm compute cluster provided by
the University of Tübingen. Parallel training is implemented using PyTorch’s
DistributedDataParallel (DDP) functionalities, which enable distribution of the
model’s parameters and gradients across multiple GPUs, each handling a subset
of the data, while ensuring synchronized updates to the model parameters across
all devices. With this setup, a typical training run takes about 2 days on four A100
GPUs.

Loss functions

We use the same loss functions as the original TransFuser++ implementation [JCG23],
which are cross entropy loss for target speed classification (using two-hot labels,
see Section 3.3.1) and mean absolute error for checkpoint predictions. The loss for
the bounding boxes is a composite loss that including position, rotation, and the
bounding box class. The other auxiliary losses are mean absolute error for depth,
and mean cross entropy loss for semantics and BEV semantics, where the mean is
taken across pixels (limited to a cone in front of the vehicle, which represents the
area visible in the camera, in the case of BEV semantics).

Optimization

Our training routine uses the AdamW optimizer [LH19] and a batch size of 16 per
GPU, 64 in total. We train for 31 epochs with a cosine annealing schedule for the
learning rate [LH17], motivated by empirically observed performance improvements
over a constant learning rate in early experiments. This technique aims to overcome
local minima in the loss by repeatedly resetting the learning rate and annealing it to
0, resulting in bigger gradient updates after a reset and smaller updates close to the
minima in the learning rate schedule.

The initial learning rate of 3 ·10−4 is reduced to zero periodically with initial period
length T0 = 1 (i.e., the first minimum is reached after the first epoch) and Tmult = 2.
Tmult is the multiplier applied to the period length after each reset, so that the
cosinusoidal annealing will take place over twice the number of epochs in the
following period. With these parameters, there are minima in the learning rate
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schedule after 1,3,7,15,31, . . . epochs, in each of which the model parameters are
saved to storage.

Single-stage vs. two-stage training

Our default training routine consists of a single training stage, including both
driving-related losses (target speed, checkpoints) and auxiliary perception losses
(depth, semantic segmentation, BEV bounding boxes, BEV semantic segmentation).
However, prior research [CPJ+22, CK22] has shown that a staged approach, where
the model is first trained exclusively on perception losses, followed by training on
both driving-related and perception losses, can lead to performance improvements.
Separating perception and control tasks in early epochs may prevent the model from
being overwhelmed by conflicting objectives early on, enabling it to build better
perception capabilites that provide a stronger basis for learning the driving task later
on.

We employ two-stage training when training models geared towards leaderboard
submission and provide an ablation study on its effect in Section 5.6. Specifically, we
train the model for 31 epochs using only perception losses, and subsequently train
for 31 more epochs with a reset of the learning rate schedule, i.e., the period length of
the cosine annealing schedule is reset to one at the start of the second training stage.

Ensembling

In most of our experiments, we repeat the training process three times with different
random seeds for parameter initialization and random processes in data loading,
and report mean performance metrics and standard deviations over the evaluations
of the three individual models. Furthermore, we experiment with using all models
as an ensemble, and apply this technique in our leaderboard submissions as well.
Ensembling is a widely used technique in machine learning and involves combining
predictions from multiple models to improve overall performance and robustness. In
our case, we simply average the predicted checkpoints and target speed prediction
(after softmax) across the three models, aiming to take advantage of complementary
strategies learned by the models. We study the effect of ensembling in Section 5.6.

3.4.1 Frame Importance: Target Speed Weights

One aspect of the training process to which we give particular attention is frame
importance. We study it from two perspectives, the first being the usage of target
speed weights in the classification loss. The task of target speed classification is
inherently imbalanced, as the frequency of instances across speed classes varies
significantly. Figure 3.3 illustrates the distribution of frames per target speed class in
our dataset.
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Figure 3.3: Target speed class distribution in our dataset after converting continuous
expert target speeds to discrete two-hot labels (cf. Section 3.3.1).

speed The imbalance stems from the nature of the driving task and the varying
number of routes across different road types (see Section 4.1 for more details on
the routes we use for data collection). Situations where the agent is stationary (e.g.,
waiting at traffic lights) constitute a large portion of the dataset. As shown in the
figure, the target speed class 0 dominates the dataset, while higher-speed classes,
corresponding to interurban or highway driving, contain substantially fewer frames.

Class imbalance is a common challenge in classification tasks, often leading to
biases towards the majority class and poor performance on minority classes. A
standard solution is to assign higher weights to the underrepresented classes in the
classification loss during training. This approach is employed in TransFuser++’s
published code [JCG23], where class weights are calculated using the formula:

wc =
N

C ∗Nc
,

where N is the total number of frames, C is the number of classes, and Nc is the
number of frames in class C. These weights are then used to scale the cross-entropy
loss for each frame:

CELossn = −wcn log
exp(xn,cn)∑C

c′=1 exp(xn,c′)
,

where cn is the true class label for frame n, and xn,c is the model prediction (softmax
probability) that the model assigns to class c for frame n. By scaling the class weights
inversely with class frequency, this method ensures that the total weight, summed
over all frames in each class, is equal for all classes. For our dataset, with N = 337k,
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C = 8 and the class counts depicted in Figure 3.3, we obtain the class weights [0.29,
1.30, 0.69, 0.81, 4.43, 4.76, 3.90, 2.41] for our target speed classes [0.0, 4.0, 8.0, 10, 13.89,
16, 17.78, 20] m/s.

However, when we applied this method, we noticed issues during testing, especially
in situations where the model needed to brake quickly, like when approaching stop
signs or pedestrians. The model didn’t brake properly in these crucial situations,
which indicated a potential problem: This approach does not account for intra-class
variance and treats all frames within the same class equally. To explore this further,
we conducted an ablation study by setting uniform weights (wc = 1) for all classes.
The results of this experiment are presented and discussed in Section 5.3.

3.4.2 Frame Importance: Data Filtering

Autonomous driving datasets typically contain many redundant frames from either
waiting times or routine driving, while critical decisions must be made in a fraction
of a second based on very few key frames. Despite research showing that pruning
large scale datasets can improve training efficiency and thus reduce resource costs,
or even improve performance in some machine learning tasks [SGS+23, YXP+22],
the challenge of effectively guiding the learning process to focus on the most relevant
parts of the dataset has not been thoroughly studied in the field of autonomous
driving.

In this work, we propose a simple heuristic and evaluate its ability to detect relevant
frames for model training, measuring the impact on overall performance. Our central
hypothesis is that important frames are those where the agent reacts to environmental
stimuli by adjusting its future path or target speed. To implement this, our method selects
frames where the model’s target labels change significantly compared to earlier
frames. More precisely, we retain all frames where the target speed changes by more
than 0.1 m/s, or the angle to any of the ten path checkpoints shifts by more than 0.5°
relative to the previous frame. This heuristic-based method captures approximately
40% of all frames, focusing on those that introduce meaningful variations during
driving.

Furthermore, it is still important for the model to be exposed to portions of the
data considered redundant by the heuristic. For example, when waiting for a gap
in oncoming traffic to overtake an obstacle in the ego agent’s lane, the target labels
may not change. While such data can be redundant due to extended waiting times,
the model still needs to learn to judge gaps accurately. To prevent the model from
producing undefined results in these situations, we randomly select and retain 14%
of the remaining frames, discarding the rest. With this filtering strategy, we obtain
datasets containing 162k frames when excluding Town13 data (48% of the the full
dataset, see Section 4.1 for more details), and 259k frames (49%) with Town13 data.
We test and discuss the performance of models trained on this filtered dataset in
Sections 5.1 and 5.4.
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Developing a competitive model for the CARLA Leaderboard 2.0 requires addressing
all stages of the machine learning pipeline. As depicted in the following diagram, our
workflow in this project was structured into three primary phases: data collection,
model training, and evaluation. This process was inherently iterative, as errors
identified through qualitative video analysis often prompted adjustments in earlier
phases, such as refining expert behavior or modifying the weights used in loss
functions during training.

For reasons described in more detail in the following sections, the sets of routes
provided by the CARLA Leaderboard team were not directly suitable for use as
training or validation sets in this project. Consequently, as part of this iterative
process, we generated custom datasets and evaluation benchmarks, which we will
describe in greater detail in the following.

4.1 Training Set

Our dataset is divided into two parts, which contain data from the following towns:

• Town12: 1885 routes, 198k frames. The CARLA team provides a set of 90
training routes on Town12 with a total length of 780.6km. However, directly
collecting data on these routes is suboptimal for two reasons. Firstly, such a
dataset would contain too much data of routine driving in between scenarios,
where nothing interesting happens. This basic driving behavior can be learned
relatively easily by TransFuser++ and does not require extensive amounts
of training data. Secondly, the distribution of scenarios is highly imbalanced
on the official training routes (see Figure 4.1), which may lead to the model
neglecting less common scenarios during training.
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Figure 4.1: Scenario distribution in the official training routes (Town12) and valida-
tion routes (Town13).

Therefore, we create a set of training routes as follows: We split the official
routes into shorter segments containing one scenario each, including a short
distance of normal driving (roughly 50-100m on average, the exact amount
varies depending on the scenario) before and after the scenario (we find this
to be sufficient data to learn normal non-scenario driving behavior). After
removing duplicates, we sample from these routes with replacement to obtain
a set of 50 short routes per scenario. As shown in Figure 4.1, some scenarios
only occur a handful of times in the official routes, meaning they will be
used multiple times for data collection (with different weather and traffic
initialization).

• Towns 01-05, Town10HD: 1828 routes, 139k frames. To increase diversity, we
additionally collect data on old towns which were provided by the CARLA
team for previous self-driving challenges. On these towns, we use the route
files from [JCG23], which are generally similar in length to our Town12 routes

32



4.2. Town13 Short Benchmark

and contain only those six scenario types which were already present in the
previous leaderboard 1.0, with additional routes for lane changes on highways.
The six scenario types are: ControlLoss (171 routes), DynamicObjectCrossing
(171 routes), VehicleTurningRoute (520 routes), SignalizedJunctionLeftTurn
(248 routes), OppositeVehicleRunningRedLight (179 routes), SignalizedJunc-
tionRightTurn (175 routes).

When training models for leaderboard submission (as opposed to internal evaluations
and ablations), we include an additional third part in the training set:

• Town13: 1722 routes, 194k frames. This town contains 20 validation routes
for the 2024 CARLA challenge with a total length of 247.6km. Despite the
shorter total length compared to the training set, the validation routes are more
densely populated with scenarios (see Figure 4.1), which helps increase the
number of scenario instances in the training set. Analogously to the Town12
data, we split the long routes into shorter segments and upsample to 50 routes
per scenarios.

On these routes, we collect data with the PDM-lite expert explained in Section 3.2 at
a frequency of 4Hz. Our dataset includes all the input and output data modalities
needed to train TransFuser++ (see Section 3.3). In total, our training dataset contains
roughly 337k frames in the internal setting, and 531k frames when including Town13
data for leaderboard models. Similar to [JCG23], we apply data augmentation in the
form of rotations and translations, randomly shifting all data modalities by up to 1
meter to the left or right, and rotating them by up to 5° around the yaw axis of the
ego. When loading the dataset into memory for training, these augmented frames
are used with a probability of 50% (otherwise, the unaltered frames are loaded).

4.2 Town13 Short Benchmark

The CARLA team provides a set of 20 official validation routes on Town13 which on
average are 12.39 km long and contain 93 scenarios. While performance on these
routes is an important benchmark to evaluate generalization performance in a setting
similar to the official leaderboard, it is not suitable for rapid iteration and allows
only limited insights into individual scenario performance. When evaluating many
scenarios in succession, the evaluation is biased towards scenarios that appear early
in the routes, since improvements on later scenarios will not have any impact if the
vehicle does not reach them in the first place. Thus, we again split the routes into
segments containing one scenario each and sample up to 15 routes per scenario type
without replacement to create the Town13 short benchmark. There are 38 scenario
types, but in some cases, fewer (or no) routes are available, which gives a total of 400
routes from 36 scenarios in this benchmark (see also Figure 6.3 for instance counts
for each scenario type).

The following explanation aims to clarify how driving scores should be interpreted
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on this benchmark, which includes only a single scenario per route, as this differs
significantly from scores on benchmarks with longer routes, such as those from
the official leaderboard or validation routes. To this end, consider a model that
consistently collides with another vehicle when attempting a particular scenario, but
manages to continue and finish the route. Because a single vehicle collision results in
an infraction score of 0.6, the mean driving score in this case would be 60. Since this
performance would typically be deemed a failure by human standards, an average
driving score of around 60 or lower indicates a highly problematic scenario, while a
score between 60 and 80 still reflects significant unreliability.

In contrast, current state-of-the-art models achieve driving scores of<10DS on official
long routes, which is mainly due to the sequential evaluation of scenarios: If a model
produces a vehicle collision in only 20% of cases when attempting scenarios and no
other infractions (much better than the example above), that would result in roughly
19 expected collisions when evaluating 93 scenarios in sequence (as on the validation
routes), producing a driving score of 100×0.619 = 0.006 when assuming full route
completion. We further discuss the implications of the chosen metrics on long routes
in Section 6.1.

4.2.1 Estimating Evaluation Variance

The validation set can be viewed as a sample from the population of all possible
scenarios on Town13. Ensuring that the validation sample is representative of the
entire population is important to prevent overfitting. In addition, evaluating routes
in CARLA involves a lot of inherent variance due to factors like different traffic
initializations, weather conditions, and sensor noise. Estimating the evaluation
variance is necessary to determine whether improvements in model performance
between iterations are genuinely significant or simply due to random chance. To this
end, we bootstrap the evaluation variance for different sample sizes on a per-scenario
basis and decide on a tradeoff between variance and computational cost.

We evaluate a trained model (“Base” configuration) on all instances of four hand-
picked scenarios present in the official validation routes. The numbers of instances for
these four scenarios are as follows: InvadingTurn: 45, ConstructionObstacleTwoWays:
23, NonSignalizedJunctionRightTurn: 60, ControlLoss: 127. In bootstrapping termi-
nology, the resulting driving scores represent the initial sample from the population
of all possible evaluations of model performance on the respective scenario type on
Town13. For K = 100000 repetitions, we resample a set of N driving scores for each
scenario with replacement, and calculate mean driving score across the N chosen
routes per scenario. The histograms of the resulting means are plotted in Figure 4.1,
and standard deviations are shown in Table 4.1.

As expected, evaluation variance decreases with increasing sample size, though the
standard deviations differ notably between scenarios. A common rule of thumb
used to interpret standard deviations is the 68–95–99.7 rule, which states that in a
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Figure 4.2: Evaluation variance on four hand-picked scenarios for varying number
of routes per scenario (N).
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COTW NSJRT IT CL
Sample size (Mean DS: 71.0) (Mean DS: 80.0) (Mean DS: 90.0) (Mean DS: 92.6)

N = 5 15.28 9.5 9.2 9.17
N = 10 10.78 6.72 6.52 6.5
N = 15 8.82 5.49 5.27 5.28
N = 20 7.58 4.76 4.60 4.58

Table 4.1: Bootstrapped evaluation standard deviation for four scenarios (Construc-
tionObstacleTwoWays, NonSignalizedJunctionRightTurn, InvadingTurn,
ControlLoss) when averaging driving scores over varying number of
routes per scenario N.

Gaussian distribution, roughly 68%, 95% and 99.7% of random samples fall within
one, two and three standard deviations from the mean, respectively. The distribution
of driving scores in our case roughly resembles a Gaussian distribution for N ≥ 10, if
the mean is not too close to the edges of the support (100 DS). For N = 15, we can
reasonably assume that performance improvements on these "unsolved" scenarios
are unlikely to be due to chance if they exceed 10–15 DS, depending on the scenario
type. Trading off evaluation variance and computational resources required for
individual evaluations, we choose N = 15 for our evaluation set. A typical evaluation
then takes around 4 hours when parallelizing evaluations across 20 GPUs, depending
on GPU availablity in our compute cluster.

It’s important to note that experiments with different datasets or model architectures
introduce additional variance from the training process itself, stemming from factors
like weight initialization and random processes during data loading. Thus, while
individual scenario results were frequently considered during the iterative process
to identify weaknesses in our self-driving models, this thesis primarily focuses
on aggregate metrics across all scenarios in the evaluation set, since these are
subject to much less variance. When repeating training and evaluation with identical
parameters (varying only the random number generator seeds), the driving scores
generally fluctuate by no more than 2–3 DS when averaged over all 400 routes in the
Town13 short evaluation set.
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In this chapter, we present the official leaderboard results and qualitatively assess the
impact of the key modifications made to adapt TransFuser++ to CARLA Leaderboard
2.0 and its new scenarios, evaluating each change in isolation. Additionally, we
conduct experiments to evaluate the influence of varying aspects of the training
dataset, such as filtering out less significant frames and adjusting the range of the
LiDAR sensor. We also present ablation studies on various techniques that have
proven successful in previous works on self-driving in CARLA [CPJ+22, CK22],
including ensembling and perception-only pre-training. In short, we aim to provide
an overview of how both our proposed modifications and previously successful
techniques perform on the scenarios present in the new CARLA leaderboard.

5.1 Official Leaderboard

Model DS ↑ RC ↑ IS ↑

LRM [RGdS+24] 1.2 9.6 0.318
Kyber-E2E [ZER+24] 3.5 8.5 0.50
CarLLaVA 6.9 18.1 0.42

TF++ (no filtering) 5.2 11.3 0.48
TF++ (w/ filtering) 5.6 11.8 0.47

Model Ped ↓ Veh ↓ Stat ↓ Red ↓ Sto ↓ Sce ↓ Blo ↓

LRM [RGdS+24] 0.249 1.643 0.249 0.249 0.398 1.195 0.598
Kyber-E2E [ZER+24] 0.682 1.079 0.625 0.284 0.114 0.114 0.000
CarLLaVA [RCM+24] 0.053 1.173 0.053 0.000 0.107 0.133 0.453

TF++ (no filtering) 0.000 1.240 0.043 0.043 0.128 0.385 0.727
TF++ (w/ filtering) 0.000 1.263 0.082 0.041 0.122 0.204 0.693

Table 5.1: Official results on CARLA Leaderboard 2.0. Secret test routes (Town 14).
TF++ (Ours) outperforms prior modular pipelines [RGdS+24, ZER+24],
and places 2nd overall. Upper table contains main metrics, lower table
contains infraction rates per kilometer for different infraction types.

In this section, we present our results on the official leaderboard of the CARLA
Autonomous Driving Challenge, part of the Autonomous Grand Challenge 2024
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hosted at the CVPR 2024 Workshop. Before the 2024 challenge, the best result on
this benchmark was a driving score of 1.23 achieved by LRM [RGdS+24]. Our best
submitted model outperforms this previous state of the art by 355% with a driving
score of 5.6. With this result, we achieve first place on the MAP track of the challenge
and second place in the SENSORS track, out of a total number of 40 participant
teams and 280 submissions, according to the organizers.

Our models listed as TF++ in Table 5.1 are enhanced versions of our ´´Base” model
as described in Chapter 3. The improvements compared to the “Base” model are:

• Additional training data collected on the validation town Town13, cf. Sec-
tion 4.1.

• Bigger architecture of the convolutional perception modules in TransFuser++,
cf. Section 3.3.

• Two-stage training: Includes pre-training stage with perception losses only, cf.
Section 3.4.

• Ensemble model consisting of three training seeds, cf. Section 3.4.

• Early Stopping: Due to the design of the performance metrics, we include a
mechanism that makes our agent stops after 1.5km (even if it could go further).
This has a significant effect on DS, RC and IS - We discuss the motivation for
and effect of applying this technique in more detail in Section 6.1.

• Data filtering: The model marked as “TF++ (w/filtering)” is trained on a filtered
version of the dataset focusing on the most interesting frames as explained in
Section 3.4.2.

Ablation studies on the effect of some of these changes are provided in Section 5.6.

5.1.1 Comparison to Other Leaderboard Entries

Among the models listed in Table 5.1, CarLLaVA and TF++ (ours) are the only
end-to-end models. LRM [RGdS+24] uses a modular design with separate modules
for perception, risk assessment and navigation, including a hand-crafted finite-state
machine for decision making. Kyber-E2E [ZER+24] is another modular architecture,
consisting of modules for sensing, perception, tracking and prediction, as well as
planning and control. In contrast to the other entries listed in the table, it uses the
ground truth birds-eye-view HD map as model input, and is thus only eligible for
the MAP track of the 2024 challenge (see Section 3.1).

Our model is the best openly available model in the challenge with published
code, dataset and models. Major differences of the overall highest scoring closed-
source entry, CarLLaVA [RCM+24], to our method, include the removal of LiDAR
data as model input, dataset scale, and the usage of a large vision transformer
for image perception. With roughly 2.9 million frames, their training dataset is
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roughly 5.5× larger than ours (531k frames). Additionally, their transformer vision
encoder (LLaVA-NeXT [LLL+24]) is pre-trained on “internet scale data”, whereas the
convolutional neural network we use in our RGB perception branch is pre-trained
on ImageNet, and the LiDAR branch is trained from scratch. As highlighted in their
technical report, this pre-training is crucial for CarLLaVA’s performance. In terms of
the number of parameters, their models are between 2.9× and 10× larger than ours
(350 million to 1.2 billion compared to 120 million). Other differences include the use
of two target points as input, which we found to be not useful in our experiments
(cf. Section 5.6), as well as the use of a “semi-entangled output representation”
which uses the same equidistant checkpoint predictions we use for lateral control,
but uses waypoints as in the original TransFuser [CPJ+22] implementation for
longitudinal control (instead of a target speed classification network). Furthermore,
CarLLaVA uses multi-layer perceptrons to predict waypoints and checkpoints from
the intermediary transformer features, wherease we employ a GRU to predict
checkpoints and a MLP to predict target speed classes.

5.2 Expert Style

Exp. Style DS↑ RC ↑ IS ↑

PDM-l 78.9 ± 1.1 96.4 ± 0.6 0.80 ± 0.01
Base 84.8 ± 0.5 98.6 ± 0.3 0.86 ± 0.00

Exp. Style Ped ↓ Veh ↓ Stat ↓ Red ↓ Sto ↓ Sce ↓ Blo ↓

PDM-l 0.31 2.16 0.54 0.06 0.21 0.35 0.20
Base 0.20 1.69 0.17 0.13 0.04 0.20 0.09

Table 5.2: Expert style. Results on Town13 short, reported over 3 training seeds.
Original PDM-lite expert style (PDM-l) vs. modified behavior (Base).
Includes confounding factor of reduced expert target speeds.

Initially, we used PDM-lite as the expert driver for data collection, expecting good
results since PDM-lite achieves high scores compared to other privileged driving
algorithms in CARLA [Bei24]. However, early video analysis of the trained model
revealed poor braking performance, prompting a change in IDM parameters, as
detailed in Section 3.2.1. Generally, this change made the expert brake more abruptly
and at shorter distances from objects triggering the braking response, such as stop
signs, obstacles, or pedestrians, making the expert’s behavior easier for an imitation
learning agent to learn.

Figure 5.1 illustrates this change when approaching pedestrians. By default, the
expert slows down when it predicts that a pedestrian will enter the driving path,
even when the pedestrian is often obstructed by an obstacle like a parked vehicle.
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This made it difficult for the model to learn, as there was no clear signal in the IL
agent’s camera or LiDAR input data. With our adjusted IDM parameters, the expert
brakes more sharply, stopping about 4 meters before the now visible pedestrian. The
improvement likely arises from the adjusted behavior providing a clear braking
signal for the model to learn from (a pedestrian directly in front of the ego vehicle),
whereas the default behavior required the model to generalize across various
situations where a pedestrian might appear further ahead.

While we used a pedestrian scenario to illustrate the effect, this change also impacts
various other scenarios and types of infractions, as shown in Table 5.2. Overall, the
change in expert behavior resulted in a significant performance boost of 5.9DS on
average. Although there is a potential confounding factor – the reduction of the
expert’s target speeds from 80% to 72% of the speed limit when there is no traffic
(which was changed in the same dataset iteration) – we estimate that the impact of
this change is minor in comparison. Importantly, the updated dataset led to a 35%
reduction in pedestrian collisions, a 22% decrease in vehicle collisions, and a 69%
drop in collisions with static objects. Notably, these improvements occurred without
significantly affecting the expert’s own driving performance. Overall, this result
highlights the importance of considering expert driving style when developing a
competitive imitation learning agent for the CARLA Leaderboard.

5.3 Speed Weights

Speed W. DS↑ RC ↑ IS ↑

✓ 81.7 ± 0.9 97.8 ± 0.1 0.83 ± 0.01
✗ (Base) 84.8 ± 0.5 98.6 ± 0.3 0.86 ± 0.00

Speed W. Ped ↓ Veh ↓ Stat ↓ Red ↓ Sto ↓ Sce ↓ Blo ↓

✓ 0.18 1.89 0.27 0.24 0.12 0.23 0.13
✗ (Base) 0.20 1.69 0.17 0.13 0.04 0.20 0.09

Table 5.3: Speed weights. Results on Town13 short, reported over 3 training seeds.
Weights: [0.29, 1.30, 0.69, 0.81, 4.43, 4.76, 3.90, 2.41] for the speeds [0.0, 4.0,
8.0, 10, 13.89, 16, 17.78, 20] m/s.

Our first experiment related to frame importance focused on applying class weights
in the target speed classification loss as described in Section 3.4.1. In the original
TransFuser++ implementation, more frequent classes are assigned lower weights,
while less frequent classes are given higher weights. This approach aims to prevent
the model from becoming biased toward common classes.

As shown in Table 5.3, removing these class weights and instead using uniform
weights (wc = 1) across all classes significantly improved the model’s performance,
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5.3. Speed Weights

Default, target spd: 4.9m/s

Default, target spd: 8.3m/s

Adjusted, target spd: 9.5m/s

Adjusted, target spd: 3.6m/s

Figure 5.1: Expert style compared on the same route. The default PDM-Lite brakes
early (left), when the pedestrian is hardly visible in the image, while the
adjusted expert brakes later (right).
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resulting in an average driving score increase of 3.1DS. This finding suggests that
class frequencies are not a reliable measure for frame importance in our context.

For example, class 0, which corresponds to braking, is the most frequent class in
our dataset (cf. Figure 3.3). While class 0 includes many redundant frames, such as
waiting at red lights, it also contains critical events, like stopping for pedestrians or
at stop signs, which are essential for safe driving. When class weights are applied,
the loss associated with class 0 is reduced due to its high frequency, making it easier
for the model to ignore brief, but important, braking phases in crucial situations.

By removing the class weights, we ensure that the model assigns appropriate
importance to these critical braking frames. In general, applying class weights based
on frequency is not a viable strategy when classes are inhomogeneous and contain
both important and unimportant frames.

5.4 Data Filtering

Setting DS↑ RC ↑ IS ↑

Base 84.8 ± 0.5 98.6 ± 0.3 0.86 ± 0.00
Filt 83.7 ± 1.6 98.5 ± 0.1 0.85 ± 0.01

Setting Ped ↓ Veh ↓ Stat ↓ Red ↓ Sto ↓ Sce ↓ Blo ↓

Base 0.20 1.69 0.17 0.13 0.04 0.20 0.09
Filt 0.12 1.94 0.16 0.11 0.05 0.23 0.08

Table 5.4: Dataset filtering. Results on Town13 short, reported over 3 training seeds.
Full dataset (Base) vs. filtered dataset containing half the number of frames
(Filt).

As an alternative approach to measuring importance of dataset frames, we propose
the use of heuristics that estimate whether a frame changes the model’s target labels
compared to previous frames. We filter the dataset based on the heuristic introduced
in Section 3.4.2 and compare the performance of models trained on this filtered data
to those trained on the full dataset to detect changes in driving performance. To
maintain the overall number of gradient updates during training, we compensate
for the reduced dataset size by training the model for twice the number of epochs.

In Table 5.4, we present the results of this filtering strategy compared to training on
the full dataset. While the average driving score is slightly better with the full dataset,
the difference of 1.1 DS falls within the typical range of variance observed across
three training seeds and evaluation runs. Furthermore, the maximum performance
achieved by an individual model across seeds is marginally higher when trained
on the filtered dataset (85.5 DS vs. 85.3 DS). In addition, on the official leaderboard
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(Table 5.1), our score of 5.2DS on the SENSORS track was obtained using a model
trained without any filtering, whereas the score on the MAP track improved to 5.6
DS when the filtering strategy was applied. Again, this difference may be due to
evaluation variance. In summary, despite reducing the dataset size by more than
50%, the proposed heuristic maintains comparable performance to models trained on
the full dataset, effectively eliminating redundant frames while preserving essential
information for the model’s learning process.

5.5 LiDAR Range

Range DS↑ RC ↑ IS ↑

32m (Base) 84.8 ± 0.5 98.6 ± 0.3 0.86 ± 0.00
64m 86.2 ± 0.1 98.1 ± 0.2 0.87 ± 0.00

Range Ped ↓ Veh ↓ Stat ↓ Red ↓ Sto ↓ Sce ↓ Blo ↓

32m (Base) 0.20 1.69 0.17 0.13 0.04 0.20 0.09
64m 0.12 1.37 0.20 0.16 0.06 0.15 0.13

Table 5.5: LiDAR range. Results on Town13 short, reported over 3 training seeds.

The new obstacle avoidance scenarios in Leaderboard 2.0 require the ego vehicle to
wait for a gap in the opposite lane that is large enough for it to safely accelerate, pass
the obstacle in the opposite lane and return to its original lane. These scenarios occur
in both urban and rural areas, and thus require accounting for vehicles far ahead
of the ego vehicle. Due to observed failures of the "Base" model in these scenarios,
where it often misjudged the distance of oncoming traffic, we extended the LiDAR
range in front of the ego vehicle from 32 meters to 64 meters, while keeping the side
and rear LiDAR ranges unchanged.

This adjustment improved the model’s performance by enabling more accurate
detection of distant objects, leading to a 19% reduction in vehicle collisions. Conse-
quently, the average driving score increased by 1.4 points. Unlike in the case of data
filtering, we are confident that this difference is significant because of the reduced
standard deviations oberved across trials; all three seeds achieved a driving score of
at least 86 DS, a score that was not reached with any seed with the standard LiDAR
range. This finding is consistent with the recent study by [ZER+24], which observed
a notable rise in vehicle collisions when the LiDAR range was limited to 32 meters.

Although this experiment showed promising results, we were unable to finalize and
integrate these improvements in time for the challenge. Consequently, the extended
LiDAR range was not used in the competition.
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5.6 Additional Experiments

Setting DS ↑ RC ↑ IS ↑

Base 84.8 ± 0.5 98.6 ± 0.3 0.86 ± 0.00
Big 84.5 ± 1.6 97.9 ± 0.7 0.86 ± 0.01
Pre 86.5 ± 0.9 98.4 ± 0.6 0.87 ± 0.01
Ens 86.2 98.3 0.87
GT Vel 82.8 ± 0.4 97.9 ± 0.7 0.84 ± 0.00
2TPs 82.2 95.6 0.85
NoAug 82.4 ± 1.7 98.7 ± 0.2 0.83 ± 0.02
NoOT 83.4 ± 1.0 97.9 ± 0.6 0.84 ± 0.01

Expert 99 100 0.99

Setting Ped ↓ Veh ↓ Stat ↓ Red ↓ Sto ↓ Sce ↓ Blo ↓

Base 0.20 1.69 0.17 0.13 0.04 0.20 0.09
Big 0.07 1.73 0.29 0.07 0.05 0.27 0.14
Pre 0.14 1.40 0.13 0.16 0.03 0.17 0.12
Ens 0.16 1.55 0.16 0.16 0.04 0.22 0.09
GT Vel 0.04 1.94 0.20 0.13 0.06 0.38 0.08
2TPs 0.17 1.75 0.44 0.12 0.08 0.20 0.29
NoAug 0.11 2.13 0.47 0.23 0.03 0.17 0.07
NoOT 0.21 1.90 0.22 0.20 0.03 0.19 0.12

Expert 0.01 0.10 0.01 0.00 0.00 0.00 0.00

Table 5.6: Results on Town13 short. Std over 3 training seeds where available.
Training on Towns 01-05, 10, 12 (337k frames).

Table 5.6 provides an overview over some additional experiments and ablation
studies. One group of experiments relates to scaling up the model, which has proven
effective in Leaderboard 1.0 [CPJ+22, JCG23].

• Big: Bigger architecture of the convolutional perception modules in Trans-
Fuser++, cf. Section 3.3. This change does not seem to have an effect on
performance in this experiment, as the score differences are smaller than the
standard deviations.

• Pre: Indicates pre-training with perception losses only, cf. Section 3.4. We
observe a performance increase of 1.7DS on average, indicating that the
reduced complexity of perception-only pre-training helps the model build a
better foundation for the downstream driving task.

• Ens: Ensemble model consisting of three training seeds, cf. Section 3.4. We
observe a performance increase of 1.4DS compared to the average performance
of the individual models. It also beats the maximum performance of an
individual Base model (85.3DS), indicating that the individual models learned
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complementary features and decision-making strategies that, when combined,
enhance overall performance.

The GT Vel (ground truth velocity) experiment refers to appending the true 2D
velocity vectors of dynamic actors, such as pedestrians, cyclists and vehicles to the
BEV LiDAR model input. Thus, this experiment increases the number of BEV input
channels from 1 to 3 and uses privileged inputs not available on the leaderboard.
Velocity vectors are only appended to pixels with existing LiDAR hits, in order to
avoid the confounding factor of exposing ground truth object shapes to the model.
It aims to determine whether this information could reduce the most common type
of infraction in all of our models: vehicle collisions.

Unexpectedly, this experiment produced a negative result: While it did produce the
lowest pedestrian collision rate of any experiment at 0.04 collisions per kilometer,
vehicle collisions increased by about 15%, resulting in an overall performance drop
of 2DS on average. This suggests two important points:

• Adding velocity information is ineffective at reducing vehicle collisions - the
issue may lie in a failure to forecast the future behavior of other actors, or to
connect other vehicles’ current and future behavior to the ego’s own predicted
path to infer appropriate driving signals in certain crucial moments.

• Even if the additional information is not helpful to avoid collisions, the model
should theoretically be able to learn to ignore it. However, the performance
drop indicates that the convolutional perception stack has problems learning to
disentangle different dimensions of the LiDAR input to ignore irrelevant parts,
picking up spurious correlations instead. This problem is known as causal
confusion and has been observed in various studies on imitation learning,
such as [PSL+24, WLQ+21].

The 2TPs (two target points) experiment represents another attempt at reducing
vehicle collisions (performed with a single training seed). In this setup, we provided
the model with the next two target points on the route (as a concatenated 4D
vector) instead of just one, based on the hypothesis that this might enhance the
model’s ability to anticipate and respond to lane changes by detecting them earlier.
However, this modification resulted in a decline in performance. Additionally, we
experimented with introducing the target points earlier in the architecture as an
extra MLP-encoded token for the transformer decoder, but this approach also failed
to yield performance improvements (results for this experiment are not shown in
the table).

Finally, we provide two ablation studies related to dataset diversity.

• NoAug: Ablation on rotation and translation data augmentations, cf. Section 4.1.
Without augmentation, we observed an increase in collisions with both vehicles
and layout elements, resulting in a drop 2.4DS on average mainly due to an
increased number of collisions with vehicles and static objects. This underscores
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the importance of augmentation in providing resistance to out-of-distribution
(OOD) compounding errors: In almost all situations, our expert driver stays
very close to the center of the lane. Without augmentation, if the model deviates
slightly from the center during inference, it may produce highly inaccurate
outputs due to having left its training distribution. Adding shifts and rotations
during data collection teaches the model how to respond when it has deviated
from the center of the lane. As a result, the model learns the corrective behavior
of steering back towards the center, reducing the likelihood of collisions.

• NoOT: Ablation on using additional training data collected on old Leaderboard
1.0 towns, cf. Section 4.1. In this experiment, we correct for the reduced number
of frames (198k instead of 337k frames) by oversampling the remaining data
(Town12 only) in each epoch. Thus, each epoch still contains the same number
of batches, which ensures a constant number of total gradient updates. This
results in a drop in average performance of 1.4DS with a standard deviation of
1.0 over the three training seeds. While it is not clear if this drop is significant,
we conclude that the increased dataset diversity obtained by collecting data
on the old LB1 towns probably leads to a small increase in performance.
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In this chapter, we delve into the implications of our findings. We begin by focusing
on how the current leaderboard evaluation metrics can lead to counterintuitive
results, exploring mathematical strategies to optimize leaderboard scores, and
proposing changes to the metrics to encourage more realistic driving behaviors.
Next, we provide a qualitative analysis of our model’s performance, highlighting
strengths and identifying areas for improvement. Lastly, we offer a range of promising
directions for future research inspired by our analysis and related work.

6.1 On Leaderboard Evaluation Metrics

Here, we discuss an issue introduced by the evaluation metrics used on the official
leaderboard, which can sometimes yield counterintuitive results - models that
might be deemed superior based on qualitative human assessment may receive
lower scores on the leaderboard. We also demonstrate a way to exploit this fact to
maximize leaderboard scores. As stated in 3.1.3, the main driving score is calculated
as the product of route completion and unnormalized infraction score. This leads to a
tradeoff where it can be advantageous to stop an agent preemptively, reducing RC
and increasing IS to improve the overall driving score: In simple terms, if a model
accumulates enough infractions on a route segment such that the resulting infraction
score diminishes the driving score more than the distance traveled would increase it,
then it may be preferable for the model to stop driving and wait for the simulator to
time out rather than continue along the route. In the following, we formulate this
concept mathematically and determine the optimal distance an agent should travel
to maximize the driving score.

6.1.1 Optimizing Driving Score Mathematically

For this analysis, we approximate driving score as a function of the fraction x ∈ [0,1]
of the route that the agent completes (see Section 6.1.2 for details):

DS(x) = RC(x)× IS(x) ≈ 100xIxL, x ∈ [0,1],

DS(x) ≈ 100xIxL, x ∈ [0,1],
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Figure 6.1: Approximate driving score as a function of route completion fraction
x for different infraction coefficients I. DS(x) has a global maximum at
x < 1 if I < 0.907, which creates an incentive to stop early.

where L is the route length, and we define

I = 0.5
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as the infraction coefficient, which represents the average penalty factor that the agent
accumulates in each kilometer driven. Note that in contrast to the formula for IS
(see Section 3.1.3), the exponents here are normalized by the distance traveled d. We
exclude infractions that do not have constant penalty factors, which are MinSpeed
infractions and route deviations, as they have a negligible impact. Maximizing this
function, we obtain the solution

xmax = −(L · log I)−1,

with a theoretically maximal driving score of DS(xmax) = − 100
L · e · log I . Figure 6.1 shows

this function, along with the corresponding maxima, for L = 10.295 (the mean length
in kilometers of the official test routes) and different values of I.

Mathematically, a model profits from early stopping if xmax < 1, i.e., I < 0.907. The
figure illustrates this nicely: If I < 0.907, expected driving score is maximized at
xmax < 1, with driving scores dropping off significantly at higher route completion
fractions x. Furthermore, this threshold is far from being reached by any of the
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current top entries on the leaderboard, meaning that at the current state of progress,
all participants must use a variant of early stopping in order to be competitive.

6.1.2 Infraction Score Approximation

Here, we explain how we approximate driving score as a function of the route
completion fraction x. The formula introduced in Section 6.1.1 is:

DS(x) = RC(x)× IS(x) ≈ 100xIxL, x ∈ [0,1].

The first part, RC(x) = 100x, is exact (this is simply the definition of route completion).
The second part, IS(x) ≈ IxL, is an approximation. For all infraction types (we use
Ped as an example here), we approximate the number of infractions when only
completing a fraction x of the route as

#Ped(x) = xL
#Ped

d
.

In words, we assume that the number of infractions scales linearly in x. For example,
if the agent has traveled d = 4 kilometers and incurred #Ped = 4 pedestrian infraction
in the process, then we assume that the number of pedestrian infractions would be
2 if it had only traveled 2 kilometers (or 1.5 if it had only traveled 1.5 km). This is
clearly not satisfied in practice (the true number of infractions is always a natural
number, and the probability to incur an infraction is not uniform along the route),
but it is a reasonable estimate without detailed modeling of the test routes.

With this assumption, the infraction score can be expressed as

IS(x) = 0.5#Ped(x)
∗0.6#Veh(x)

∗0.65#Stat(x)
∗0.7#Red(x)

∗0.7#Yie(x)
∗0.7#Sce(x)

∗0.8#Sto(x)

≈ 0.5xL #Ped
d ∗0.6xL #Veh

d ∗0.65xL #Stat
d ∗0.7xL #Red

d ∗0.7xL #Yie
d ∗0.7xL #Sce

d ∗0.8xL #Sto
d

=
(
0.5

#Ped
d ∗0.6

#Veh
d ∗0.65

#Stat
d ∗0.7

#Red
d ∗0.7

#Yie
d ∗0.7

#Sce
d ∗0.8

#Sto
d
)xL

= IxL

and we arrive at our driving score approximation.

6.1.3 Leaderboard Score Maximization in Practice

Here, we describe how we use the idea described above to increase our score on the
leaderboard. First, it is necessary to estimate I, for which we use infraction statistics
collected in evaluations of our leaderboard model (no filtering) on the official Town13
evaluation routes. We obtain I = 0.43, which yields xmax = 0.115. Thus, our model
should theoretically stop at d = L ·xmax = 1.18km to maximize expected DS. However,
we need to account for distribution shift between the validation routes on Town13
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Early stopping DS↑ RC ↑ IS ↑ D̂S ↑ RC ↑ I ↑

✗ 0.70 70.1 0.04 5.02 70.1 0.05
✓ 4.81 8.0 0.59 0.98 8.0 0.12

Table 6.1: Early stopping after 1km on the 20 validation routes, tested with our
leaderboard model (no filtering). The modified driving score D̂S proposed
in Section 6.1.4 using the infraction coefficient I and infraction penalties
scaled by a factor of 0.2 successfully removes the incentive for early
stopping.

and test routes on Town14. Early leaderboard results suggested that the scenario
density is lower on the test routes than on the validation routes, leading to a lower
number of infractions overall. To account for this, we heuristically choose d = 1.5km
in practice.

We explored two methods for tracking the distance traveled: discrete integration
using the agent’s speed sensor and summing the distances between each pair of
GPS ticks recorded by the agent’s GPS sensor. We found the latter method to be
significantly less accurate, which is likely due to the additive noise which CARLA
adds to the GPS sensor. Consequently, we use the first method in practice. When the
vehicle reaches the distance threshold, we set the target speed to zero to bring the
ego vehicle to a halt and trigger a simulator timeout after 180 seconds.

Early stopping significantly affects all main performance metrics obtained on
long Town13 validation routes, as shown in Table 6.1. While the original model
without early stopping achieves much higher route completion (70.1 on average), it
accumulates enough infractions along the way to severely compromise its driving
score. Early stopping trades off route completion for a much better infraction score,
increasing overall driving score roughly sevenfold. As for the official leaderboard,
Table 5.1 shows that all high-ranking submissions to the Leaderboard 2.0 test server
have a route completion of less than 18.1. This indicates that these methods employ
some form of early stopping, whether explicitly or implicitly, and the leading entry,
CarLLaVA, also acknowledges this strategy in their technical report [RCM+24].

6.1.4 Eliminating the Tradeoff Problem

As described in the previous sections, the tradeoff introduced by the performance
metrics used in Leaderboard 2.0 forces participants to terminate evaluations early to
remain competitive, which is counterproductive. Therefore, we recommend adjusting
the performance metrics for future challenges. Instead of using the infraction score
(IS) (which uses the absolute number of infractions in the exponents, see Section 3.1.3)
for driving score calculation, we propose using the infraction coefficient (I) as defined
above, which incorporates infraction frequencies. Put simply, this means dividing the
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Figure 6.2: Approximate driving score with our proposed adjustment as a function
of route completion fraction x for different infraction coefficients I. D̂S(x)
increases linearly with x, eliminating the incentive for early stopping.

exponents by the distance d traveled by the agent:
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D̂S = RC× I

With this normalization and using a similar approximation as before, the driving
score can be modeled as a function of the route completion fraction x as follows.

D̂S(x) = RC(x)× I(x) ≈ 100xI, x ∈ [0,1].

This function, depicted in Figure 6.2 for varying I, increases linearly with x. This
eliminates the incentive to stop early, since the maximum driving score is always
reached at x = 1, i.e., full route completion. As a side effect, this change leads to an
increase in average driving scores achieved with identical models compared to the
original formula. If this increase is not desired, it can be corrected by scaling down
the penalty factors for all infractions, which reduces the expected driving scores
while maintaining the maximum score at 100.

Table 6.1 illustrates the effectiveness of our proposed modifiation. Here, we have
scaled all infraction penalties by a factor of 0.2 to keep the resulting driving scores in
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a similar range as with the original formula. Concretely, we apply a base penalty
of 0.2 ∗0.5 = 0.1 for Ped, 0.2 ∗0.6 = 0.12 for Veh, and so forth. Comparing this to the
original metrics, it is clear that the revised driving score calculation successfully
discourages early stopping, since the model that stops after one kilometer now
receives a much lower driving score, as intended.

6.2 Qualitative Analysis of Driving Performance

In this section, we dive deeper into the strengths and weaknesses of our models,
analyze individual scenario performance and point out behavioral failure modes.

6.2.1 Overview

Figure 6.3 provides an overview of how different variants of our model perform
on each scenario in the Town13 short evaluation benchmark (see Tables 5.5 and 5.6
for averaged metrics). When interpreting these results, it is important to consider
the substantial scenario-level evaluation variance discussed in Section 4.2.1. Certain
scenario types, such as EnterActorFlow (N = 4), HazardAtSideLane (N = 3), and
HighwayCutIn (N = 3), have few instances in the validation routes, which may limit
the significance of performance differences between individual models. To mitigate
this variance, we include data from nine different training runs and evaluations
(three per configuration) and rank the scenarios based on the average driving score
across all evaluations, which increases the total sample size by a factor of 9. As a
result, the figure provides a more reliable indication of which scenarios our models
typically excel in and which they struggle with.

6.2.2 Failure Cases

Here, we visualize and discuss some of the behavioral failure modes encountered in
the problematic scenarios and discuss potential solutions. We focus on scenarios that
appear more frequently in the evaluation routes and use a single seed of the Base
model (Mean DS: 85.3) for this analysis. The visualizations include the front camera
image and a birds-eye-view image showing LiDAR hits, the model’s checkpoint
predictions, the target points used as input and the auxiliary BEV perception
predictions using the following colors:
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Figure 6.3: Scenario difficulty within Town13 short averaged over different model
configurations. N is the number of routes in the benchmark, AVG DS is
the average driving score across all 9 included models (total sample size
9 ·N). Includes 3 seeds each of Base (blue), two-stage training (green) and
extended LiDAR range (red).
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Figure 6.4: Scenario: ConstructionObstacleTwoWays. Overreliance on camera im-
age - When traffic cones aren’t visible any more, the ego forgets to merge
back into its original lane.

Grey: Road (semantics)
Yellow: Road marking (semantics)
Light Green: Green traffic light (semantics)
Light Orange: Vehicle (semantics)
Green: Ego vehicle and pedestrian (bounding box)
Orange: Vehicle (bounding box)
Blue: Path predictions
Red: Target point (used as model input)

ConstructionObstacleTwoWays

With an average performance 61.6DS, this scenario is highly problematic for all
models. In this scenario, the ego encounters a construction obstacle blocking its
own lane and must pass it by moving into an adjacent lane with oncoming traffic.
Figure 6.4 illustrates a common failure mode, where the ego fails to merge back
to its original lane, which frequently leads to vehicle collisions. At first, the ego
successfully waits for a sufficiently large gap in the oncoming traffic and switches to
the adjacent lane. As long as the traffic cones marking the construction site are visible
in the camera image, the model’s path predictions correctly indicate a lane change
back to the original lane. However, as shown in the final frame, once the traffic cones
disappear from the camera image, the model erroneously predicts staying in the left
lane. Notably, the traffic cones are still visible in the LiDAR image, suggesting an
overreliance on the camera image for this scenario. After staying in the wrong lane,
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Figure 6.5: Scenario: SignalizedJunctionLeftTurn. Oncoming traffic is neglected in
left turn after traffic light, leading to vehicle collision and subsequent
successful recovery.

the ego often collides with an oncoming vehicle.

There are several potential solutions to this problem. First, a multi-frame model could
use past camera frames, where the cones are visible, for path prediction. Second,
adding a rear camera could help the model detect this situation in a single-frame
setting. Third, incorporating a memory of past predictions could enable the model
to recall the correct lane change from previous frames without explicitly using
past inputs or additional sensors. This could be implemented in a probabilistic
framework, treating past predictions as prior knowledge and calculating maximum
a posteriori estimates for checkpoints using the predictions from the current frame.

SignalizedJunctionLeftTurn

This scenario, along with SignalizedJunctionRightTurn, NonSignalizedJunctionLeft-
Turn and NonSignalizedJunctionRightTurn, belongs to a group of scenarios where
the main challenge lies in negotiating with other vehicles in intersections. These
scenarios are among the more difficult ones for our models, with average driving
scores roughly ranging from 75 to 86. Figure 6.5 shows a common failure case where
the ego does not react adequately to another actor, leading to a vehicle collision.
After the traffic light switches to green, the vehicle accelerates and turns without
reacting to the oncoming vehicle in the lane it needs to cross. Despite the collision,
the ego demonstrates recovery abilities, returning to the road and completing the
route. As noted in previous work with TransFuser++ [JCG23], these models often
have a strong bias to steer towards the next target point, which may help the model
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recover also in this case.

It is worth noting that the bounding box of the other vehicle is predicted by the model
(see the second frame), indicating that this is not a failure in the perception part of
the model. Furthermore, as shown in the experiment with ground truth velocities
as input (see Section 5.6), vehicle collisions are typically not due to an inability to
judge other actors’ speeds. Reliably solving this scenario may require additional
data or focused fine-tuning for the model to learn to predict other vehicle’s paths
more robustly and thus avoid collisions. Potentially, a model-based approach with a
world model that describes other actors’ dynamics may also do better here.

VehicleTurningRoutePedestrian

In this scenario, the ego must make an unproteced turn through dense traffic and
encounters a pedestrian on the road during or directly after the turn. This combination
of hazards make it one of the most challenging scenarios in Leaderboard 2.0, where
our models achieve an average driving score of 65.1.

Figure 6.6 shows two failure cases in this scenario. In the first case (top), the model
fails to execute a turn through very dense traffic, where the margins for selecting
the right moment to accelerate are extremely narrow. After colliding with a vehicle,
the model also collides with a pedestrian that walks into the ego vehicle while it
is stationary. The second example (bottom) depicts an instance of this scenario at
night, where the ego does not collide with another vehicle, but fails to recognize the
pedestrian hazard in time. Note that the pedestrian is barely visible until illuminated
by the ego’s headlights, which is only a couple of frames before the collision. This
failure is likely due to covariate shift, since the expert would brake earlier in this
situation, even before the pedestrian becomes visible in the RGB image. By the time
the pedestrian is revealed by the headlights, the model is already outside its training
distribution, where it has not learned a braking reflex. This issue could potentially be
mitigated with on-policy methods like DAgger [RGB11], which involve querying the
expert during failure states (such as when the pedestrian appears in the headlights)
to teach the model how to respond appropriately in such situations.

In our view, this scenario may remain one of the most challenging, as it is hard
to come up with simple adjustments that promise immediate improvements in
dense-traffic turns. In addition to on-policy methods, potential solutions include
adjusting the expert’s behavior to accelerate faster through small gaps in traffic to
avoid vehicle collisions (which would, however, require an even faster reaction to
the pedestrian hazard) or fine-tuning the model on additional training data for these
situations.
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Figure 6.6: Scenario: VehicleTurningRoutePedestrian. Top: Failure to perform un-
protected turn through dense traffic with crossing pedestrian, producing
vehicle and pedestrian collision. Bottom: Failure to recognize pedestrian
at night, braking response not triggered once pedetrian is visible in the
headlights, producing collision.
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Other scenarios

• YieldToEmergencyVehicle. In this new Leaderboard 2.0 scenario, the ego
must yield to an emergency vehicle approaching from behind on a multi-lane
highway. All our models fail in this scenario, since it is impossible to distinguish
emergency vehicles from regular vehicles from the LiDAR image alone. Thus,
solving this scenario requires the addition of a back camera.

• Navigating in dense traffic. Several other low-performance scenarios such as
MergerIntoSlowTraffic(V2), HighwayExit, EnterActorFlow and others, require
navigating in dense traffic with other vehicles in front of, next to, and/or behind
the ego at varying speeds. Ours models are currently not able to handle these
situations to a satisfying degree, frequently colliding with other actors. Adding
more cameras to the rear or sides of the ego vehicle could potentially mitigate
this issue at the cost of additional parameters and compute requirements.
Moreover, many of these scenarios occur infrequently in the training routes as
shown in Figure 4.1, leading to heavy upsampling of the existing instances in
the training set. Collecting more data in these situations could thus improve
perfomance. If additional training instances become available, it could further
beneficial to finetune the model on such dense-traffic situations.

6.3 Future Research Directions

We propose several promising research directions aimed at developing more robust
and safer models in CARLA. Drawing from our findings, we begin with targeted
adaptations and then expand to broader, more general strategies.

• Dataset Balancing and Expansion. According to our analysis in the previous
section, our models tend to underperform in scenarios with a low number
of instances. Enhancing the dataset by manually creating and collecting data
for these underrepresented scenarios, rather than relying solely on the official
training and validation routes, could improve performance in rare situations.
Additionally, scaling up the dataset, particularly by focusing on challenging
situations such as lane changes in dense traffic, turns through narrow gaps in
oncoming traffic, and low-light conditions, could improve model reliability.

• Sensor Setup. Integrating additional sensors, particularly rear and side cam-
eras, could provide the model with a more comprehensive 360-degree per-
ception of its environment. This is particularly crucial for scenarios like Yield-
ToEmergencyVehicle, where the model must detect and respond to vehicles
approaching from behind.

• Temporal Context. To address issues where the model fails to recall crucial past
information, such as in the ConstructionObstacleTwoWays scenario, future
models could benefit from integrating temporal context instead of basing
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predictions on a single frame only. By utilizing past camera frames with
video perception modules or a memory of past predictions, the model could
remember and execute actions which are hard to predict from the current
frame.

Looking ahead, we also explore broader concepts that could significantly enhance
the performance of driving models in CARLA.

• Mixture of Experts. Instead of training a single model to handle all driving
scenarios, it may be more effective to employ a mixture of expert models,
each specialized in a specific mode of driving. These modes could range
from broader categories like highway, interurban, and urban driving to more
granular ones, such as expert models tailored to specific scenarios. Each
expert could be fine-tuned from a base model using techniques like Low-Rank
Adaptation (LoRA), which has recently shown success in language models
[HSW+21]. LoRA works by adjusting only a subset of parameters, making
fine-tuning more efficient and targeted. In addition to training individual
experts, this approach would require a weighting function to determine which
expert to activate in a given situation. This function could be trained in a
supervised manner, where the labels correspond to different driving modes or
scenario types.

• Learning from Experience. In the future, models could improve by using more
advanced learning methods that help them adapt and learn from experience,
rather than just copying expert behavior (behavior cloning). As driving situa-
tions become more complex, simply mimicking experts may not be enough
to handle all rare or unusual cases. Using reinforcement learning or other
experience-based techniques could allow models to make better decisions
in a wider range of situations, mitigating covariate shift. To reduce the high
computational cost of online reinforcement learning, which requires expen-
sive simulator interactions in the training loop, a possible solution is to use
IL-bootstrapped RL [KST+22]. In this approach, the RL model is initialized
with an IL policy, essentially treating RL as an additional training stage after
our current training routine.

• Model-Based Methods. Incorporating model-based methods, where the model
learns to predict the environment and anticipate future states, could improve
decision-making [HPBL24]. In CARLA, the behavior of other actors is relatively
simple, with pedestrians typically moving at a constant speed without changes
of direction, and vehicles moving in a predictable way according to hard-coded
rules specified by the CARLA Traffic manager. In this setting, model-based
methods seem suitable, as predicting the environment and especially other
actors’ behaviors is often one of the main challenges with these approaches.
However, when applying model-based methods in a non-privileged agent
using sensor inputs only, the model might still not be able to perceive all
necessary information, such as traffic light states for oncoming traffic, making
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prediction more challenging. Despite this, a robust world model could simulate
possible outcomes of different actions, leading to more informed and safer
driving decisions, particularly in dynamic and unpredictable situations not
encountered in the training data, where foresight is crucial.

6.4 Conclusion

In this thesis, we have refined the entire machine learning pipeline for CARLA
Leaderboard 2.0, creating a custom dataset and evaluation benchmark and identifying
key architectural adaptations necessary for the new evaluation setting. We have
demonstrated that expert driving style, beyond just expert performance, has a
significant impact on the performance of downstream IL models. Additionally, we
have found that using frequency-based class weights in target speed classification
is detrimental due to the inherent inner-class diversity in frame importance and
proposed a simple heuristic that effectively captures important frames by detecting
changes in target labels.

Incorporating these findings, we have developed the top-performing open-source
model for CARLA Leaderboard 2.0 to date, including ablation studies and qualitative
failure analyses to further evaluate its strengths and limitations. Additionally, our
investigation into the design of performance metrics revealed a flaw that incentivizes
premature termination of evaluation routes. To address this, we have proposed
an adjusted metric that eliminates this incentive for a fairer assessment of model
performance in future challenges.

By publishing our dataset, benchmark, models, and code, we provide a toolkit for
the community to build upon. We hope this work will serve as a starting point for
addressing the issues we’ve identified and that future research will drive advances
in leaderboard performance akin to those seen with Leaderboard 1.0, which would
represent a significant step toward reliable end-to-end autonomous vehicles ready
for widespread use.
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