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Evaluating Self-Driving



Common Task Framework

▶ A common task framework accelerates research progress
▶ Computer vision: static benchmarks
▶ How can the community compare dynamic self-driving agents?
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CARLA Leaderboard

Slide Credit: German Ros https://carla.org/ https://leaderboard.carla.org/ 6



CARLA Leaderboard Evaluation

Slide Credit: German Ros https://carla.org/ https://leaderboard.carla.org/ 7



Imitation Learning for CARLA



Imitation Learning

Motivation: Hand-designing a sensor-based driving policy is difficult

▶ Step 1: Hand-design expert which uses privileged information
▶ Step 2: Train sensor-based policy to mimic demonstrator
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Sensor Fusion



Sensors
RGB Camera

Dense RGB input

Lacks reliable 3D information

Variation in weather

LiDAR Point Cloud

3D information

Sparse input

No traffic light state

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 11



Sensors
RGB Camera

Dense RGB input

Lacks reliable 3D information

Variation in weather

LiDAR Point Cloud

3D information

Sparse input

No traffic light state

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 11



Geometric Fusion
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Geometric Fusion Lacks Global Context

▶ From the yellow region, geometric fusion aggregates features to the blue region

▶ However, for safe navigation, it is useful to aggregate features for the red region
since it contains vehicles which are affected by the traffic light

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 13
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TransFuser



Key Idea

Use attention-based feature fusion
to capture the global context of the
scene across modalities.

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 15



TransFuser
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TransFuser
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Loss Functions

▶ L1 loss on waypoints: L =
∑4

t=1 ||wt −wgt
t ||1

▶ Cross-entropy loss on semantics
▶ L1 loss on depth
▶ Cross-entropy loss on HD map
▶ Focal loss on CenterNet heatmaps
▶ L1 loss on CenterNet offsets

K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger: TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022. 18



Experiments
Dataset
▶ 8 Towns and randomized weather conditions in CARLA
▶ Expert policy based on MPC
▶ ∼3.5k short routes with hand-crafted scenarios

Sensors
▶ RGB cameras: 704×160 resolution, 132◦ FOV
▶ LiDAR: 32m range, 64 channels, 10 Hz rotation frequency

Evaluation
▶ Long routes (∼2km) with dense traffic
▶ Ensemble of 3 training runs to reduce variance

K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger: TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022. 19
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Results: Internal Benchmark

Method Driving Score ↑ Route Completion ↑ Infraction Score ↑
Late Fusion 22 ± 4 83 ± 3 0.27 ± 0.03

Geometric Fusion 27 ± 1 91 ± 1 0.30 ± 0.02
TransFuser (Ours) 47 ± 6 93 ± 1 0.50 ± 0.00
Privileged Expert 77 ± 2 89 ± 1 0.86 ± 0.03

▶ Geometric Fusion, TransFuser and Expert have similar route completion
▶ Clear trend in infraction score (Expert > TransFuser > Baselines)

K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger: TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022. 20



CARLA Leaderboard

Method Driving Score ↑ Route Completion ↑ Infraction Score ↑
LAV 62 94 0.64

TransFuser (Ours) 61 87 0.71
GRIAD 37 62 0.60
WOR 31 58 0.56

▶ Simple end-to-end IL (competitors have complex multi-stage training pipelines)
▶ Rank 2 at submission (April), with best infraction score among top methods
▶ Still gets blocked more often than LAV
▶ DS > 60, rapid overall progress on leaderboard since 2020 (DS < 20)

K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger: TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022. 21



Summary

Conclusions
▶ Global contextual reasoning is crucial in complex urban scenarios

▶ Attention is effective in aggregating information from multiple modalities
▶ Driving Score of simple Imitation Learning baseline is competitive

Code
▶ www.github.com/autonomousvision/transfuser

22
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Other Work

▶ Ohn-Bar et al.: Learning Situational Driving. CVPR, 2020.
“Driving in diverse environments is eased by mixture policies.”

▶ Prakash et al.: Exploring Data Aggregation in Policy Learning. CVPR, 2020.
“Vanilla DAGGER doesn’t work well ⇒ we must sample critical states.”

▶ Behl et al.: Label Efficient Visual Abstractions. IROS, 2020.
“Visual abstractions help, but annotating less can be more.”

▶ Chitta et al.: NEAT: Neural Attention Fields. ICCV, 2021.
“BEV predictions from 2D images via neural fields can improve safety.”
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Extra Slides



CARLA Leaderboard
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CARLA Leaderboard Submission
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Motivation

Ego-Vehicle

Traffic
Traffic Lights

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 27



Research Questions

▶ How to integrate representations from multiple modalities?

▶ To what extent should the different modalities be processed independently?
▶ What kind of fusion mechanism to use for maximum performance?

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 28
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Attention-based Feature Fusion
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▶ Consider feature maps as sets of tokens (cells of grid = tokens)
▶ Pass all tokens to self-attention module and reshape back into grid form

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021. 29



Overall Pipeline

▶ Step 1 - Privileged Agent (Data Collection)
▶ Demonstrator
▶ Routes
▶ Sensors

▶ Step 2 - Sensorimotor Agent (Training)
▶ Architecture
▶ Loss function
▶ Controller

30
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Demonstrator: Components

Lateral Control
▶ Input: HD Map
▶ A* Planner
▶ PID controller
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Demonstrator: Components

Longitudinal Control
▶ Input: traffic light states
▶ Input: nearby actor states

▶ Position
▶ Orientation
▶ Velocity

▶ Kinematic bicycle model
▶ PID controller

31



Demonstrator

▶ Simplified version of Model Predictive Control (MPC)
▶ 2 candidate trajectories using HDmap + PID controllers

▶ Greedy: target speed = 4 m/s
▶ Conservative: target speed = 0 m/s

▶ Roll out greedy trajectory with bicycle model
▶ Choose conservative trajectory if infraction is detected

32



Routes

▶ ∼ 3000 Junctions (∼100m long)
▶ ∼ 500 Curves (∼400m long)
▶ 8 CARLA towns (1, 2, 3, 4, 5, 6, 7, 10)
▶ 7 CARLA scenarios (1, 3, 4, 7, 8, 9, 10)

▶ Time of day: custom distribution around 6 preset values
▶ Weathers: 7 CARLA presets
▶ Dataset size: 226k frames

33
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Sensors

RGB cameras
▶ 3 cameras: front, 60◦ left, 60◦ right
▶ Field of view: 60◦ each
▶ Resolution: 320×160 pixels each
▶ Composited into 704×160 input
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Sensors

64 beam LiDAR
▶ 10 Hz frequency: use alternate frames
▶ Field of view: 180◦

▶ Rasterized into BEV (256×256, 32m range)
▶ 2 channels: ground plane, objects

35



Sensors

Additional sensors used for auxiliary supervision
▶ Semantic Segmentaion
▶ Depth
▶ HD Map: same coordinate frame as LiDAR
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Baselines - Late Fusion
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Baselines - Geometric Fusion
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Controller

▶ Heading and target speed from waypoints
▶ PID controllers
▶ Inertia problem: creep forward if still for ∼1 minute

▶ Safety check: no creeping when LiDAR indicates close proximity

39



Runtime

Method Single Model Ensemble (3)
Late Fusion (LF) 23.5 46.7

Geometric Fusion (GF) 43.5 69.1
TransFuser (Ours) 27.6 59.6

Table: We show the runtime per frame in ms for each method averaged over all timesteps in a
single evaluation route. We measure runtimes for both a single model and an ensemble of
three models. A single TransFuser model runs in real-time on an RTX 3090 GPU.
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Auxiliary Tasks

Auxiliary Losses DS ↑ RC ↑ IS ↑
None 44 78 0.58

No Depth 56 91 0.61
No Semantics 53 88 0.61
No HD Map 50 89 0.58

No Vehicle Detection 53 88 0.60
All Losses (Worst Seed) 49 90 0.55
All Losses (Best Seed) 56 92 0.62

Table: Auxiliary Tasks. Training without auxiliary losses leads to a significant reduction in RC
and DS.
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Architecture
Parameter Value DS ↑ RC ↑ IS ↑

Fusion Direction
LiDAR → Camera 46 87 0.55
Camera → LiDAR 47 86 0.57

Fusion Scales
1 49 84 0.57
2 53 91 0.59
3 48 85 0.60

Attention Layers
2 53 90 0.60
6 56 92 0.61
8 56 92 0.61

Default Config
Worst Seed 49 90 0.55
Best Seed 56 92 0.62

Table: Architecture Ablations. The default configuration fuses in both directions. It uses 4
fusion scales, 4 attention layers.
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Model Inputs

Parameter Value DS ↑ RC ↑ IS ↑

LiDAR Range
64m × 32m 49 91 0.54
64m × 64m 47 90 0.52

LiDAR Encoder PointPillars 50 91 0.55

Camera FOV
120◦ 49 90 0.56
90◦ 42 88 0.51

No Rasterized Goal - 54 91 0.60
No Rotation Aug - 56 92 0.61

Default Config
Worst Seed 49 90 0.55
Best Seed 56 92 0.62

Table: Model Input Ablations. The default configuration uses a 32m × 32m LiDAR range and
132◦ camera FOV.
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Inertia Problem

Velocity Input? Creeping? DS ↑ RC ↑ IS ↑

-
- 46 78 0.63
✓ 56 92 0.62

✓
- 37 64 0.65
✓ 45 86 0.52

Table: Inertia Problem. Creeping improves the RC in both the setting where we input the
velocity to our encoder and our default configuration (no velocity input).
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