Imitation with Transformer-Based Sensor Fusion for Autonomous Driving

Kashyap Chitta

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Team

Kashyap Chitta

Aditya Prakash Bernhard Jaeger

Zehao Yu

Katrin Renz

Andreas Geiger

Covered Papers

Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

A. Prakash*, K. Chitta* and A. Geiger. CVPR, 2021.

TransFuser: Imitation with Transformer-Based Sensor Fusion K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger. PAMI, 2022.

Evaluating Self-Driving

Common Task Framework

Computer Vision

- A common task framework accelerates research progress
- Computer vision: static benchmarks
- ► How can the community compare dynamic self-driving agents?

CARLA Leaderboard

CARLA Leaderboard Evaluation

Imitation Learning for CARLA

Imitation Learning

Motivation: Hand-designing a sensor-based driving policy is difficult

Imitation Learning

Motivation: Hand-designing a sensor-based driving policy is difficult

Step 1: Hand-design expert which uses privileged information

Imitation Learning

Motivation: Hand-designing a sensor-based driving policy is difficult

- **Step 1:** Hand-design expert which uses privileged information
- ► Step 2: Train sensor-based policy to mimic demonstrator

Sensor Fusion

Sensors

RGB Camera

- ✤ Dense RGB input
- Lacks reliable 3D information
- Variation in weather

Sensors

RGB Camera

- ✤ Dense RGB input
- Lacks reliable 3D information
- Variation in weather

- + 3D information
- Sparse input
- No traffic light state

Geometric Fusion

Geometric Fusion Lacks Global Context

► From the yellow region, geometric fusion aggregates features to the blue region

Geometric Fusion Lacks Global Context

- From the yellow region, geometric fusion aggregates features to the blue region
- However, for safe navigation, it is useful to aggregate features for the red region since it contains vehicles which are affected by the traffic light

Key Idea

Use **attention-based** feature fusion to capture the **global context** of the scene **across modalities.**

RGB Image

LiDAR BEV

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021.

Full Architecture

K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz and A. Geiger: TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022. 17

Loss Functions

- L_1 loss on waypoints: $\mathcal{L} = \sum_{t=1}^4 ||\mathbf{w}_t \mathbf{w}_t^{gt}||_1$
- Cross-entropy loss on semantics
- \blacktriangleright L_1 loss on depth
- ► Cross-entropy loss on HD map
- ► Focal loss on CenterNet heatmaps
- \blacktriangleright L₁ loss on CenterNet offsets

Experiments

Dataset

- ► 8 Towns and randomized weather conditions in CARLA
- ► Expert policy based on MPC
- ► ~3.5k short routes with hand-crafted scenarios

Experiments

Dataset

- ► 8 Towns and randomized weather conditions in CARLA
- ► Expert policy based on MPC
- \blacktriangleright ~3.5k short routes with hand-crafted scenarios

Sensors

- ► RGB cameras: 704×160 resolution, 132° FOV
- ► LiDAR: 32m range, 64 channels, 10 Hz rotation frequency

Experiments

Dataset

- ► 8 Towns and randomized weather conditions in CARLA
- ► Expert policy based on MPC
- \blacktriangleright ~3.5k short routes with hand-crafted scenarios

Sensors

- ► RGB cameras: 704×160 resolution, 132° FOV
- ► LiDAR: 32m range, 64 channels, 10 Hz rotation frequency

Evaluation

- ► Long routes (~2km) with dense traffic
- ► Ensemble of 3 training runs to reduce variance

Results: Internal Benchmark

Method	Driving Score \uparrow	Route Completion \uparrow	Infraction Score \uparrow
Late Fusion	22 ± 4	83 ± 3	0.27 ± 0.03
Geometric Fusion	27 ± 1	91 ± 1	0.30 ± 0.02
TransFuser (Ours)	47 ± 6	93 ± 1	$\textbf{0.50} \pm \textbf{0.00}$
Privileged Expert	77 ± 2	89 ± 1	$\textbf{0.86} \pm \textbf{0.03}$

- ► Geometric Fusion, TransFuser and Expert have similar route completion
- Clear trend in infraction score (Expert > TransFuser > Baselines)

CARLA Leaderboard

Method	Driving Score ↑	Route Completion \uparrow	Infraction Score \uparrow
LAV	62	94	0.64
TransFuser (Ours)	61	87	0.71
GRIAD	37	62	0.60
WOR	31	58	0.56

- Simple end-to-end IL (competitors have complex multi-stage training pipelines)
- Rank 2 at submission (April), with **best infraction score** among top methods
- Still gets blocked more often than LAV
- DS > 60, rapid overall progress on leaderboard since 2020 (DS < 20)

Conclusions

► Global contextual reasoning is crucial in complex urban scenarios

Conclusions

- ► Global contextual reasoning is crucial in complex urban scenarios
- ► Attention is effective in aggregating information from multiple modalities

Conclusions

- ► Global contextual reasoning is crucial in complex urban scenarios
- Attention is effective in aggregating information from multiple modalities
- ► Driving Score of simple Imitation Learning baseline is competitive

Conclusions

- ► Global contextual reasoning is crucial in complex urban scenarios
- Attention is effective in aggregating information from multiple modalities
- ► Driving Score of simple Imitation Learning baseline is competitive

Code

www.github.com/autonomousvision/transfuser

Other Work

Ohn-Bar et al.: Learning Situational Driving. CVPR, 2020.
 "Driving in diverse environments is eased by mixture policies."

Other Work

- Ohn-Bar et al.: Learning Situational Driving. CVPR, 2020.
 "Driving in diverse environments is eased by mixture policies."
- ▶ Prakash et al.: Exploring Data Aggregation in Policy Learning. CVPR, 2020.
 "Vanilla DAGGER doesn't work well ⇒ we must sample critical states."

Other Work

- Ohn-Bar et al.: Learning Situational Driving. CVPR, 2020.
 "Driving in diverse environments is eased by mixture policies."
- ▶ Prakash et al.: Exploring Data Aggregation in Policy Learning. CVPR, 2020.
 "Vanilla DAGGER doesn't work well ⇒ we must sample critical states."
- Behl et al.: Label Efficient Visual Abstractions. IROS, 2020.
 "Visual abstractions help, but annotating less can be more."

Other Work

- Ohn-Bar et al.: Learning Situational Driving. CVPR, 2020.
 "Driving in diverse environments is eased by mixture policies."
- ▶ Prakash et al.: Exploring Data Aggregation in Policy Learning. CVPR, 2020.
 "Vanilla DAGGER doesn't work well ⇒ we must sample critical states."
- Behl et al.: Label Efficient Visual Abstractions. IROS, 2020.
 "Visual abstractions help, but annotating less can be more."
- Chitta et al.: NEAT: Neural Attention Fields. ICCV, 2021.
 "BEV predictions from 2D images via neural fields can improve safety."

Extra Slides

CARLA Leaderboard

- Open test bed to evaluate AD agents for the driving task
- Common maps, situations, and metrics
- Built upon the CARLA simulator
- Aim to accelerate progress in the research community

CARLA Leaderboard Submission

Motivation

A. Prakash, K. Chitta and A. Geiger: Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. CVPR, 2021.

► How to integrate representations from multiple modalities?

- ► How to integrate representations from multiple modalities?
- ► To what extent should the different modalities be processed independently?

- ► How to integrate representations from multiple modalities?
- ► To what extent should the different modalities be processed independently?
- ► What kind of fusion mechanism to use for maximum performance?

Attention-based Feature Fusion

• Consider feature maps as **sets of tokens** (cells of grid = tokens)

▶ Pass all tokens to **self-attention** module and reshape back into grid form

Overall Pipeline

Step 1 - Privileged Agent (Data Collection)

- Demonstrator
- Routes
- Sensors

Overall Pipeline

Step 1 - Privileged Agent (Data Collection)

- Demonstrator
- ► Routes
- Sensors

Step 2 - Sensorimotor Agent (Training)

- ► Architecture
- Loss function
- ► Controller

Demonstrator: Components

Lateral Control

- ► Input: HD Map
- ► A* Planner
- ► PID controller

Demonstrator: Components

Longitudinal Control

- ► Input: traffic light states
- ► Input: nearby actor states
 - Position
 - Orientation
 - ► Velocity
- ► Kinematic bicycle model
- ► PID controller

Demonstrator

- Simplified version of Model Predictive Control (MPC)
- ▶ 2 candidate trajectories using HD map + PID controllers
 - ► Greedy: target speed = 4 m/s
 - Conservative: target speed = 0 m/s
- Roll out greedy trajectory with bicycle model
- ► Choose conservative trajectory if infraction is detected

Routes

- ► \sim 3000 Junctions (\sim 100m long)
- ► \sim 500 Curves (\sim 400m long)
- ▶ 8 CARLA towns (1, 2, 3, 4, 5, 6, 7, 10)
- ▶ 7 CARLA scenarios (1, 3, 4, 7, 8, 9, 10)

Routes

- ► \sim 3000 Junctions (\sim 100m long)
- ► \sim 500 Curves (\sim 400m long)
- ▶ 8 CARLA towns (1, 2, 3, 4, 5, 6, 7, 10)
- ▶ 7 CARLA scenarios (1, 3, 4, 7, 8, 9, 10)
- ► Time of day: custom distribution around 6 preset values
- ► Weathers: 7 CARLA presets
- ► Dataset size: 226k frames

Sensors

RGB cameras

- ► 3 cameras: front, 60° left, 60° right
- ► Field of view: 60° each
- ► Resolution: 320×160 pixels each
- ► Composited into 704×160 input

Sensors

64 beam LiDAR

- ► 10 Hz frequency: use alternate frames
- ► Field of view: 180°
- ► Rasterized into BEV (256×256, 32m range)
- ► 2 channels: ground plane, objects

Sensors

Additional sensors used for auxiliary supervision

- Semantic Segmentaion
- ► Depth
- ► HD Map: same coordinate frame as LiDAR

Baselines - Late Fusion

Baselines - Geometric Fusion

Controller

- Heading and target speed from waypoints
- ► PID controllers
- ► Inertia problem: creep forward if still for ~1 minute
 - Safety check: no creeping when LiDAR indicates close proximity

Runtime

Method	Single Model	Ensemble (3)
Late Fusion (LF)	23.5	46.7
Geometric Fusion (GF)	43.5	69.1
TransFuser (Ours)	27.6	59.6

Table: We show the runtime per frame in ms for each method averaged over all timesteps in a single evaluation route. We measure runtimes for both a single model and an ensemble of three models. A single TransFuser model runs in real-time on an RTX 3090 GPU.

Auxiliary Tasks

Auxiliary Losses	DS ↑	RC ↑	IS ↑
None	44	78	0.58
No Depth	56	91	0.61
No Semantics	53	88	0.61
No HD Map	50	89	0.58
No Vehicle Detection	53	88	0.60
All Losses (Worst Seed)	49	90	0.55
All Losses (Best Seed)	56	92	0.62

Table: **Auxiliary Tasks.** Training without auxiliary losses leads to a significant reduction in RC and DS.

Architecture

Parameter	Value	DS ↑	RC ↑	IS ↑
Fusion Direction	$LiDAR \to Camera$	46	87	0.55
Fusion Direction	$Camera \to LiDAR$	47	86	0.57
	1	49	84	0.57
Fusion Scales	2	53	91	0.59
	3	48	85	0.60
	2	53	90	0.60
Attention Layers	6	56	92	0.61
	8	56	92	0.61
Default Config	Worst Seed	49	90	0.55
Default Config	Best Seed	56	92	0.62

Table: **Architecture Ablations.** The default configuration fuses in both directions. It uses 4 fusion scales, 4 attention layers.

Model Inputs

Parameter	Value	DS ↑	RC ↑	IS ↑
	64m × 32m	49	91	0.54
LiDAR Range	$64m \times 64m$	47	90	0.52
LiDAR Encoder	PointPillars	50	91	0.55
Camera FOV	120°	49	90	0.56
Camera FOV	90°	42	88	0.51
No Rasterized Goal	-	54	91	0.60
No Rotation Aug	-	56	92	0.61
Default Config	Worst Seed	49	90	0.55
Default Conny	Best Seed	56	92	0.62

Table: Model Input Ablations. The default configuration uses a 32m \times 32m LiDAR range and 132° camera FOV.

Inertia Problem

	Velocity Input?	Creeping?	DS ↑	RC †	IS ↑
		-	46	78	0.63
-	\checkmark	56	92	0.62	
	\checkmark	-	37	64	0.65
		\checkmark	45	86	0.52

Table: **Inertia Problem.** Creeping improves the RC in both the setting where we input the velocity to our encoder and our default configuration (no velocity input).