>>> Imitation via Abstraction and Planning
>>> [Talk at ETH]

Kashyap Chitta † (University of Tübingen) 20-02-2023

- * TransFuser: SOTA driving agent on CARLA
- * Imitating algorithms
- * New directions via data-driven simulation

>>> Team

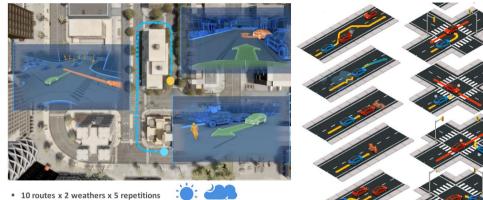
Kashyap Chitta

Aditya Prakash

Bernhard Jaeger

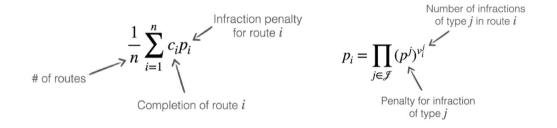
Zehao Yu

Katrin Renz



Andreas Geiger

>>> "Autonomous Intersection in Action"

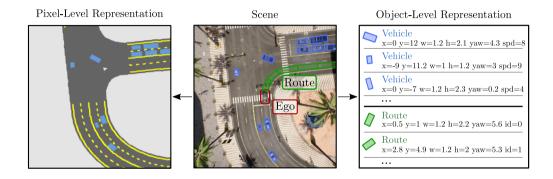

>>> CARLA Leaderboard

- 173 Km of driving experiences

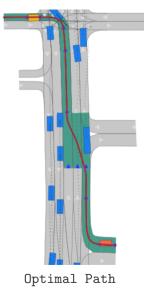
>>> Evaluation

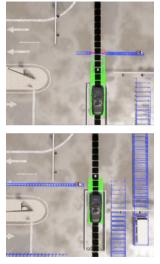
>>> How?

* Modular pipeline?

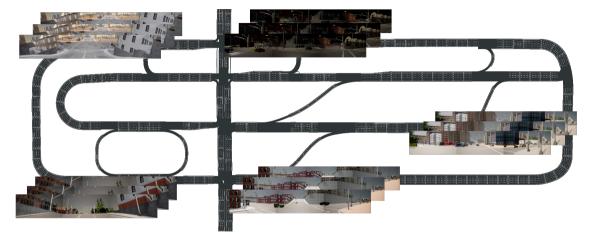

>>> How?

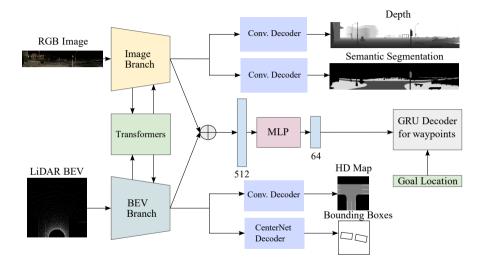
- * Modular pipeline?
- * Reinforcement learning?


>>> How?


- * Modular pipeline?
- * Reinforcement learning?
- * Imitation learning?

>>> Step 1: Abstraction


>>> Step 2: Planning



Model Predictive Control

>>> Step 3: Imitation

>>> Architecture

>>> Key Result

Method	Driving \uparrow	Completion \uparrow	Safety \uparrow
Late Fusion (LF)	22 ± 4	83 ± 3	0.27 \pm 0.03
Geometric Fusion (GF)	$27~\pm~1$	91 \pm 1	$\texttt{0.30}~\pm~\texttt{0.02}$
TransFuser (Ours)	$47~\pm~6$	93 \pm 1	$\texttt{0.50}~\pm~\texttt{0.00}$
Privileged MPC	77 ± 2	$89~\pm~1$	0.86 \pm 0.03

* GF, TransFuser and MPC have similar completion

* Clear trend in infractions (MPC > TransFuser > Baselines)

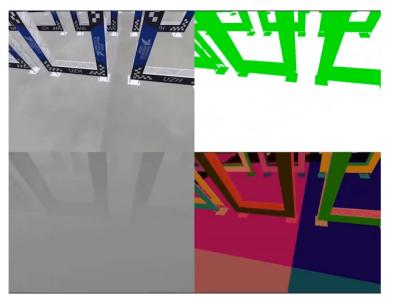
>>> CARLA Leaderboard (Challenge 2021)

Method	Driving \uparrow	Completion \uparrow	Safety \uparrow
LAV	62	94	0.64
TransFuser (Ours)	61	87	0.71
GRIAD	37	62	0.60
WOR	31	58	0.56

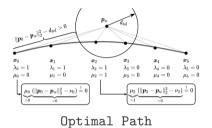
* Simple (competitors have complex multi-stage training)

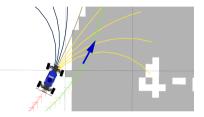
- * Rank 2, with least infractions among top methods
- * Still gets blocked more often than LAV
- * With engineering improvements (3x data), won the map track in 2022

>>> Imitating Algorithms

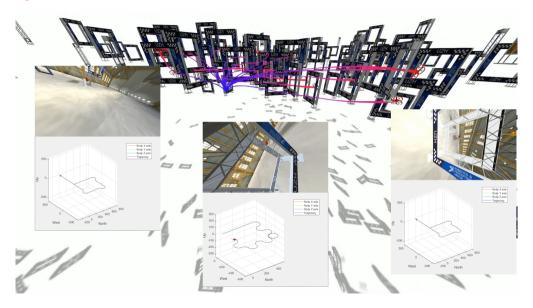

Legged Locomotion

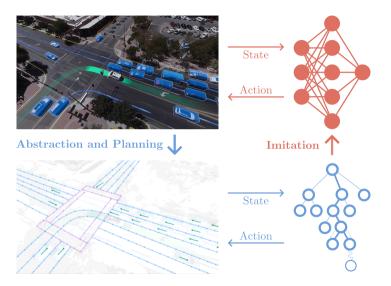
Driving


>>> Superhuman?



>>> Step 1: Abstraction

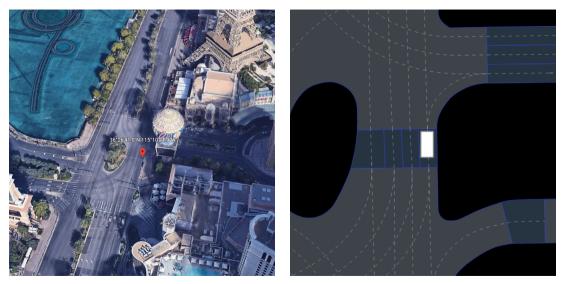

>>> Step 2: Planning



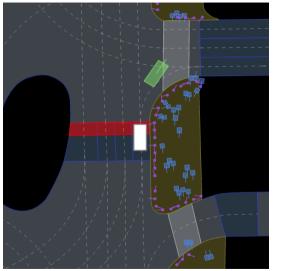
Model Predictive Control

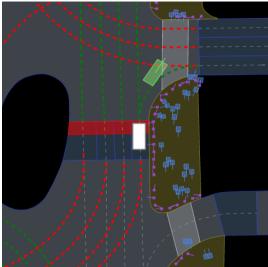
>>> Step 3: Imitation

>>> Summary: Imitating Privileged Planners

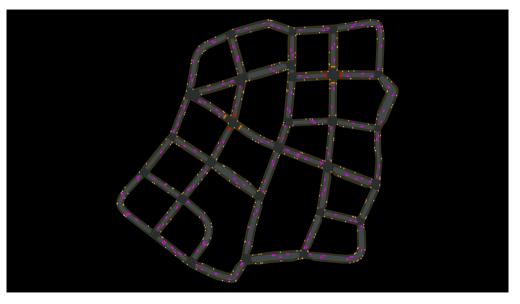

>>> Abstraction in the Real World

>>> Step 1: Mapping


>>> Step 1: Mapping



>>> Step 2: Auto-Labeling



>>> Step 2: Auto-Labeling

>>> Step 3: Moving Things

>>> Challenge 2023

nuPlan Planning

website GitHub 📿 Stars 280 📿 Forks 46 submission EvalAI

Task Description

Previous benchmarks focus on short-term motion forecasting and are limited to open-loop evaluation. nuPlan introduces long-term planning of the ego vehicle and corresponding metrics. Provided as docker containers, submissions are deployed for simulation and evaluation.

Participation

The primary metric is the mean score over three increasingly complex modes: open-loop, closed-loop non-reactive agents, and closed-loop reactive agents. Participants can follow the steps to begin the competition. To submit your results on EvalA1, please follow the submission instructions.

Important Dates

Test Phase End	May 18, 2023
Finalist Notification and Verification	May 19, 2023
Winner Announcement	Jun 02, 2023
Winner Presentation	Jun 18, 2023

* Simple imitation of algorithmic expert is SOTA on CARLA www.github.com/autonomousvision/transfuser

- * Simple imitation of algorithmic expert is SOTA on CARLA www.github.com/autonomousvision/transfuser
- * nuPlan: an exciting new challenge!
 www.github.com/motional/nuplan-devkit/

>>> Other Work

* Chitta et al. NEAT: Neural Attention Fields ICCV, 2021. BEV predictions from 2D images via neural fields can improve safety

>>> Other Work

- * Chitta et al. NEAT: Neural Attention Fields ICCV, 2021. BEV predictions from 2D images via neural fields can improve safety
- * Hanselmann et al. KING: Generating Safety-Critical Scenarios ECCV, 2022. Optimizing train data to contain near-collisions halves collision rates

>>> Other Work

- * Chitta et al. NEAT: Neural Attention Fields ICCV, 2021. BEV predictions from 2D images via neural fields can improve safety
- * Hanselmann et al. KING: Generating Safety-Critical Scenarios ECCV, 2022. Optimizing train data to contain near-collisions halves collision rates
- * Renz et al. PlanT: Explainable Planning Transformers CoRL, 2022. Transformer planners can identify the most relevant object while driving

>>> Check out our challenges!

End-to-End Autonomous Driving: Emerging Tasks and Challenges

CVPR 2023 Workshop

June 18, 2023, Vancouver, Canada

>>> Inviting Contributions! (Deadline 01.03.2023)

Scene Representations For Autonomous Driving

Hybrid workshop in conjunction with ICLR 2023, May 5th, Kigali City, Rwanda, Africa

> SUBMIT A **RESEARCH INSIGHT** (PAPER/BLOG/REPO) OR **ORIGINAL CONTRIBUTION** OF YOUR OWN WORK!