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Autonomous Driving with an MLP..
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Zhai et al,, Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in nuScenes. ArXiv, 2023.



... is the current SOTA on nuScenes!

Method Perception Ego States | L2 (m) | Collision (%) |
Information
FF (Hu et al., 2021) v - 1.43 0.43
ST-P3 (Hu et al, 2022) v - 2.1 0.71
EO (Khurana et al. 2022) v - 1.60 0.44
UniAD (Hu et al, 2023) v - 1.03 0.37
VAD (Jiang et al., 2023) v v 0.37 0.14
AD-MLP  (Zhai et al.,, 2023) - v 0.23 0.12

Zhai et al., Rethinking the Open-Loop Evaluation of End-to-End Autonomous Driving in nuScenes. ArXiv, 2023.



Open-Loop Evaluation is Flawed

Caesar et al., nuPlan: A closed-loop ML-based planning benchmark for autonomous vehicles. CVPR Workshops, 2021.



Closed-Loop Evaluation (CARLA)

https://leaderboard.carla.org/



Closed-Loop Evaluation (CARLA)
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Part 1: Sensor Fusion




Sensor Inputs
RGB Image LiDAR Point Cloud

+ Dense input + 360 degree 3D information
= Unreliable 3D information = Sparse input
= Low FOV = No traffic light state

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.



Geometric Fusion

3D

Space
A Geometric
e Feature
Projections

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.
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Geometric Fusion Lacks Global Context

» From the yellow region, geometric fusion aggregates features to the blue region

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.
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Geometric Fusion Lacks Global Context

» From the yellow region, geometric fusion aggregates features to the blue region

» Itis useful to aggregate to the red region (vehicles affected by the traffic light)

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.
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Key |dea #1

Use attention-based feature fusion
to capture the global context of the
scene across modalities.

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.



TransFuser
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Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.
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Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.




Multi-Task Imitation Learning
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Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.



Part 2: A Hidden Bias




TransFuser Extrapolates Predictions to Goal Locations




LAV and TCP Extrapolate Predictions to Goal Locations



Key |dea #2

Use attention-based feature pooling
to preserve the spatial information
of the encoder features.
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Mitigating the Bias
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Mitigating the Bias




Shift and Rotation Augmentation
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Chen et al,, Learning by Cheating. CoRL, 2019.
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CARLA Longest6 Benchmark Results

Method Driving Score © Route Completion 1
Geometric Fusion 27 £ 1 9141
TransFuser 49 £ 2 87+0
+ Transformer Decoder 63 + 4 93+ 3
+ Augmentation 71+3 95+3

» +81% from attention in sensor fusion

» +45% from attention in aggregation and augmentation
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CARLA Longest6 Benchmark Results

Method Driving Score ¥ Route Completion 1
TCP (Wu et al., NeurlPS 2022) 5442 78 +2

Perc. PlanT (Renz et al., CoRL 2022) 58+5 88 +1

CaT (Zhang et al,, CVPR 2023) 58 +2 79 £ 2
ThinkTwice (Jia et al,, CVPR 2023) 61 73

Ours 71+3 95+3




Summary

Key Takeaways

» Open-loop evaluation is flawed
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www.github.com/autonomousvision/transfuser
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» Attention-based sensor fusion captures global context
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Summary

Key Takeaways
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» Attention-based feature pooling mitigates shortcut learning
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www.github.com/autonomousvision/transfuser

Summary

Key Takeaways
» Open-loop evaluation is flawed
» Attention-based sensor fusion captures global context

» Attention-based feature pooling mitigates shortcut learning

Code

» www.github.com/autonomousvision/transfuser
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www.github.com/autonomousvision/transfuser

Rapidly Growing Field

CARLA Launched CARLA CARLA CARLA  CARLA v2 Launched
DS: 8.94 DS: 24.98 DS: 47.65 DS:79.95 DS:0.01
) ) ) nuPlan Launched

Reinforcement Policy Modality / Data Score: 0.90
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Thank You!

kashyap7x.github.io
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Kashyap Chitta  Bernhard Jaeger Katrin Renz
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