End-to-End Driving with Attention

Kashyap Chitta

ICRA Scalable AD Workshop, 02.06.2023

Autonomous Driving with an MLP...

... is the current SoTA on nuScenes!

Method		Perception Information	Ego States	L2 (m) ↓	Collision (%) \downarrow
FF	(Hu et al., 2021)	\checkmark	-	1.43	0.43
ST-P3	(Hu et al., 2022)	\checkmark	-	2.11	0.71
EO	(Khurana et al. 2022)	\checkmark	-	1.60	0.44
UniAD	(Hu et al., 2023)	\checkmark	-	1.03	0.31
VAD	(Jiang et al., 2023)	\checkmark	\checkmark	0.37	0.14
AD-MLP	(Zhai et al., 2023)	-	\checkmark	0.23	0.12

Open-Loop Evaluation is Flawed

Closed-Loop Evaluation (CARLA)

Closed-Loop Evaluation (CARLA)

Part 1: Sensor Fusion

Sensor Inputs

RGB Image

LiDAR Point Cloud

- + Dense input
- Unreliable 3D information
- Low FOV

- + 360 degree 3D information
- Sparse input
- No traffic light state

Geometric Fusion

Geometric Fusion Lacks Global Context

► From the yellow region, geometric fusion aggregates features to the blue region

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.

Geometric Fusion Lacks Global Context

► From the yellow region, geometric fusion aggregates features to the blue region

► It is useful to aggregate to the red region (vehicles affected by the traffic light)

Key Idea #1

Use **attention-based** feature fusion to capture the **global context** of the scene **across modalities.**

TransFuser

TransFuser

Multi-Task Imitation Learning

Chitta et al., TransFuser: Imitiation with Transformer-Based Sensor Fusion for Autonomous Driving. PAMI, 2022.

Part 2: A Hidden Bias

TransFuser Extrapolates Predictions to Goal Locations

LAV and TCP Extrapolate Predictions to Goal Locations

Key Idea #2

Use **attention-based** feature pooling to preserve the **spatial information** of the encoder features.

Mitigating the Bias

Mitigating the Bias

Shift and Rotation Augmentation

CARLA Longest6 Benchmark Results

Method	Driving Score ↑	Route Completion \uparrow
Geometric Fusion	27 ± 1	91 ± 1
TransFuser	49 ± 2	87 ± 0
+ Transformer Decoder	63 ± 4	93 ± 3
+ Augmentation	71 ± 3	95 ± 3

- ► +81% from attention in sensor fusion
- ► +45% from attention in aggregation and augmentation

CARLA Longest6 Benchmark Results

Method		Driving Score \uparrow	Route Completion \uparrow
TCP	(Wu et al., NeurIPS 2022)	54 ± 2	78 ± 2
Perc. PlanT	(Renz et al., CoRL 2022)	58 ± 5	88 ± 1
СаТ	(Zhang et al., CVPR 2023)	58 ± 2	79 ± 2
ThinkTwice	(Jia et al., CVPR 2023)	61	73
Ours		71 ± 3	95 ± 3

Key Takeaways

► Open-loop evaluation is flawed

Key Takeaways

- ► Open-loop evaluation is flawed
- Attention-based sensor fusion captures global context

Key Takeaways

- ► Open-loop evaluation is flawed
- Attention-based sensor fusion captures global context
- ► Attention-based feature pooling mitigates shortcut learning

Key Takeaways

- ► Open-loop evaluation is flawed
- Attention-based sensor fusion captures global context
- ► Attention-based feature pooling mitigates shortcut learning

Code

www.github.com/autonomousvision/transfuser

Rapidly Growing Field

Thank You!

Kashyap Chitta

Bernhard Jaeger

Katrin Renz

Aditya Prakash

Zehao Yu

Andreas Geiger

