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Benchmarking AVs 1s hard.

Have we made any real progress in the last year?



Which trajectory is best?




Which trajectory Is best?
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Avg. Displacement Error 2.24 1.05 0.98



Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?

Zhigi Lit?*, Zhiding Yu?, Shiyi Lan?, Jiahan Li', Jan Kautz?, Tong Lu!, Jose M. Alvarez?
'Nanjing University 2NVIDIA
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(a) Trajectory Heatmap (b) Typical Scene of nuScenes
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What about simulation?
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Limited open-source options, e.g. CARLA “,u% ..

e Domain gaps
e Compute-hungry
e High variance in results




Non-reactive simulation

Bypassing the challenges of simulation



Non-reactive ego-vehicle: no sensor simulation

Reactive Ego
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Non-reactive ego-vehicle: no sensor simulation

Reactive Ego
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Non-reactive background: no traffic simulation

Reactive Background
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Non-reactive background: no traffic simulation

Reactive Background
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No Collision

Drivable Area Time to

Compliance Collision Ego Progress

Comfort
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NAVSIM includes five simulation-based metrics.
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No Collision

No Collision (NC) for bounding box intersections that are not “at fault”.
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Drivable Area
Compliance

Drivable Area Compliance (DAC) for staying within lanes, intersections, parking areas.
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Time to
Collision

Time-to-Collision (TTC) penalizing near-collisions within one second.
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Ego Progress
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Ego Progress (EP) relative to a privileged MPC planner.
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Comfort

Comfort (C) inspecting that acceleration and jerk are within human-like thresholds.
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1. No at-fault Collision

2. Drivable Area Compliance
3. Time to Collision

4. Ego Progress

5. Comfort
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The Predictive Driver Model (PDM) Score

PDMS = <
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The Predictive Driver Model (PDM) Score

PDM Score (4s) 0.0 0.97 0.0



Does it work?

Benchmarking 150+ planners using their
CLS (Closed-Loop Score)

. . o _— .C' D ¢ f
e Simulation @ 10Hz £ N .5‘“ .
e 15second horizon 0afal, o N

. . o ®° 0..‘A o
e OLS: prior open-loop metric o ‘.&- 8e° o
e Both used in 2023 nuPlan Challenge ol e
e PDMS and CLS much better correlated .04 4 OLSmiebased
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CLS (f=10Hz, d=15s)



Entry bottlenecks

Making E2E driving research more accessible



Storage bottleneck of large-scale benchmarking

Storage requirements seldom feasible, e.g. nuPlan
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Storage bottleneck of large-scale benchmarking

10Hz - 2Hz

Storage requirements seldom feasible, e.g. nuPlan
OpenScene:

e Redistribution with 2Hz (< 3TB)

e Standardized train (100k) & test (12k) splits

e Private data for evaluation server

20+TB > 31TB
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Improving the test distribution

Agent NC DAC PDMS
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Unfiltered recordings are mostly static or straight driving scenes.
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Improving the test distribution

Agent NC DAC PDMS
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Filtered data results in more diverse and challenging scenes.
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Agent Interface in NAVSIM

Task: predict 4-second trajectory

e 8 xsurround-view cameras
e 5xmerged LIDAR
e Ego velocity & acceleration

e Navigation goal

N\
@ 1.5s history
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Baselines taken from nuScenes
(a) UniAD
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Baselines taken from CARLA

(c) TransFuser

— e
BEV Features
ResNets +
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Current state of the field

What does the new benchmark show us?



Benchmarking on filtered test scenarios

Method NCo DACt e Comft EPT PDMS
Ego-MLP 93 77 84 100 63 66
(a) UniAD 98 92 93 100 79 83
(b) PARA-Drive 928 92 93 100 79 84

Clear gap between sensor agents and “blind” Ego-MLP
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Benchmarking on filtered test scenarios

Method NCo DACt Tce Comf1t EP PDMS
Ego-MLP 93 77 84 100 63 66
(a) UniAD 98 92 93 100 79 83
(b) PARA-Drive 98 92 93 100 79 84
(c) TransFuser 98 93 93 100 79 84

TransFuser on par with nuScenes baselines, despite less compute (1vs. 80 GPUs)

34



Benchmarking on filtered test scenarios

Method NCo DACt Tce Comf1t EP PDMS
Ego-MLP 93 77 84 100 63 66
(a) UniAD 98 92 93 100 79 83
(b) PARA-Drive 98 92 93 100 79 84
(c) TransFuser 98 93 93 100 79 84

Human Trajectories 11% better than all sensor agents.
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2024 NAVSIM Challenge

463 submissions, 78 on leaderboard [~

L}
|
I &
15 - | 8
| o = Institution PDM Score (primary) ¥V Team Name
= 1S
< I > J = NVIDIA 0.9274 Team NVIDIA
S104 = " Us '
£ [
a~]
:n: N *:
1 i iERCE 0.8747 ZERON
o= CN  =—58%
51 12
10
|

0.4 0.6 0.8 1.0
PDM Score

\V)

36



Limitations

We still recommend complementing NAVSIM with CARLA:

e Longer evaluations (~10km, several minutes of driving)
e Considers more infractions (rear-end collisions, running red lights)
e However, simulation much more compute intensive
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Next steps

Devkit available, paper out soon!

Better metrics
More metrics
New datasets
More challenges!

NAVSTig
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